Subscribe to RSS
DOI: 10.1055/s-2004-834810
20-Deoxy-20-fluorocamptothecin: Design and Synthesis of Camptothecin Isostere
Publication History
Publication Date:
20 October 2004 (online)

Abstract
20-Deoxy-20-fluorocamptothecin (2) has been synthesized as an isosteric analogue of camptothecin (1). The use of selectfluor or N-fluorobenzenesulfonimide for the electrophilic fluorination of 20-deoxycamptothecin (3) yields the target compound. Enantioselective fluorination of 3 was also achieved using our previously described cinchona alkaloids/selectfluor combination to provide both enantiomers of 2 with 88% ee and 81% ee, respectively.
Key words
fluorine - antitumor agent - asymmetric synthesis - camptothecin - topoisomerase I
-
1a
Wall ME.Wani MC.Cook CE.Palmer KH.McPhail AT.Sim GA. J. Am. Chem. Soc. 1966, 88: 3888 -
1b
Wall ME. Med. Res. Rev. 1998, 18: 299 - 2 For a review of the camptothecin biochemistry see:
Liehr J.Giovanella BC.Verschraegen CF. Ann. N. Y. Acad. Sci. 2000, 922: 1 -
3a
Craig JT.Nicholas JR.Sidney MH. Bioorg. Med. Chem. 2004, 12: 1585 -
3b
Redinbo RR.Stewart L.Kuhn P.Champoux JJ.Hol WGJ. Science 1998, 279: 1504 -
4a
Wall ME.Wani MC.Nicholas AW.Manikumar G.Tele C.Moore L.Truesdale A.Leitner P.Besterman JM. J. Med. Chem. 1993, 36: 2689 -
4b
Wang X.Zhou X.Hecht SM. Biochemistry 1999, 38: 4374 -
5a
Jaxel C.Kohn KW.Wani MC.Wall ME. Cancer Res. 1989, 49: 1465 -
5b
Fassberg J.Stella VJ. J. Pharm. Sci. 1992, 81: 676 -
6a
Hertzberg RP.Caranfa MJ.Holden KG.Jakas DR.Gallagher G.Mattern MR.Mong SM.Bartus JO.Johnson RK.Kingsbury WD. J. Med. Chem. 1989, 32: 715 -
6b
Zhao H.Lee C.Sai P.Choe YH.Boro M.Pendri A.Guan S.Greenwald RB. J. Org. Chem. 2000, 65: 4601 -
7a
Biomedical Aspects of Fluorine Chemistry
Filler R.Kobayashi Y. Kodansha/Elsevier Biomedical; Tokyo: 1982. -
7b
Biomedical Frontiers of Fluorine Chemistry, ACS Symposium Series 639
Ojima I.McCarthy JR.Welch JT. American Chemical Society; Washington DC: 1996. -
7c
Fusso Yakugaku
Kobayashi Y.Kumadaki I.Taguchi T. Hirokawa; Tokyo: 1992. -
7d
Welch JT. Tetrahedron 1987, 43: 3123 -
7e
Smart BE. In Organofluorine Chemistry: Principles and Commercial ApplicationsBanks RE.Smart BE.Tatlow JC. Plenum; New York: 1994. Chap. 3. p.57 -
8a
Shibata N.Tarui T.Doi Y.Kirk KL. Angew. Chem. Int. Ed. 2001, 40: 4461 -
8b
Takeuchi Y.Tarui T.Shibata N. Org. Lett. 2000, 2: 639 -
8c
Takeuchi Y.Shiragami T.Kimura K.Suzuki E.Shibata N. Org. Lett. 1999, 1: 1571 -
8d
Shibata N.Das BK.Takeuchi Y. J. Chem. Soc., Perkin Trans. 1 2000, 4234 -
8e
Takeuchi Y.Kirihara K.Kirk KL.Shibata N. Chem. Commun. 2000, 785 -
8f
Shibata N.Das BK.Honjo H.Takeuchi Y. J. Chem. Soc., Perkin Trans. 1 2001, 1605 -
8g
Das BK.Shibata N.Takeuchi Y. J. Chem. Soc., Perkin Trans. 1 2002, 197 - 9 The ability of the C-F bond to act as a hydrogen bond acceptor is a matter of considerable debate. It highly depends on the molecular structures. See:
Shibata N.Das BK.Harada K.Takeuchi Y.Bando M. Synlett 2001, 1755 ; and references therein -
10a
Nicholas AW.Wani MW.Manikumar G.Wall ME.Kohn KW.Pommier Y. J. Med. Chem. 1990, 33: 972 -
10b
Ejima A.Terasawa H.Sugimori M.Ohsuki S.Matsumoto K.Kawato Y.Yasuoka M.Tagawa H. Chem. Pharm. Bull. 1992, 40: 683 - 11
Adamovics JA.Cina JA.Hutchinson CR. Phytochemistry 1979, 18: 1085 -
12a
Muniz K. Angew. Chem. Int. Ed. 2001, 40: 1653 - 12b Hintermann L., Togni A.; Angew. Chem. Int. Ed.; 2000, 39: 4359
-
12c
Piana S.Devillers I.Togni A.Rothlisberger U. Angew. Chem. Int. Ed. 2002, 41: 979 -
12d
Togni A.Mezzetti A.Barthazy P.Becker C.Devillers I.Frantz R.Hintermann L.Perseghini M.Sanna M. Chimia 2000, 55: 801 -
12e
Cahard D.Audouard C.Plaquevent J.-C.Roques N. Org. Lett. 2000, 2: 3699 -
12f
Mohar B.Baudoux J.Plaquevent J.-C.Cahard D. Angew. Chem. Int. Ed. 2001, 40: 4214 -
12g
Kim DY.Park E. J. Org. Lett. 2002, 4: 545 -
12h
Hamashima Y.Yagi K.Takano H.Tamas L.Sodeoka M. J. Am. Chem. Soc. 2002, 124: 14530 -
12i
Ma J.-A.Cahard D. Tetrahedron: Asymmetry 2004, 15: 1007 -
12j
Ibrahim H.Togni A. Chem. Commun. 2004, 1147 -
13a
Shibata N.Suzuki E.Takeuchi Y. J. Am. Chem. Soc. 2000, 122: 10728 -
13b
Shibata N.Suzuki E.Asahi T.Shiro M. J. Am. Chem. Soc. 2001, 123: 7001 -
13c
Shibata N.Ishimaru T.Suzuki E.Kirk KL. J. Org. Chem. 2003, 68: 2494 -
13d
Shibata N. Pharmacia 2003, 39: 666 - 14
Shibata N.Ishimaru T.Nagai T.Kohno J.Toru T. Synlett 2004, 1703 -
16a
Lin L.Shen J.Zhou T.Shen C.Ke M. Huaxue Xuebao 1989, 47 (5): 506 -
16b
Kitajima M.Nakamaura M.Takayama H.Saito K.Stockigt J.Amii N. Tetrahedron Lett. 1997, 38: 8997 -
17a
Jennings JP.Klyne W.Scopes PM. J. Chem. Soc. 1965, 7211 -
17b
Lowe G.Potter BVL. J. Chem. Soc., Perkin Trans. 1 1980, 2029 -
17c
Kirk DN. Tetrahedron 1986, 42: 777 -
17d
Takeuchi Y.Suzuki T.Satoh A.Shiragami T.Shibata N. J. Org. Chem. 1999, 64: 5708 - 18
Mazzinia S.Belluccia MC.Dallavallea S.Fraternalib F.Mondelli R. Org. Biomol. Chem. 2004, 2 (4): 505
References
General Experimental Procedure: A solution of 3 (82.5 mg, 0.25 mmol) in CH2Cl2 (15.0 mL) was added to a stirred solution of NF-(DHQ)2PHAL [prepared in situ from (DHQ)2PHAL (232.0 mg, 0.30 mmol) and Selectfluor (105.5 mg, 0.30 mmol) in CH2Cl2 (15.0 mL) at r.t. for 30 min] at r.t. under nitrogen atmosphere. After the mixture was stirred for 1-2 d, H2O was added to the reaction mixture and extracted with CH2Cl2. The organic phase was washed with 3% HCl, sat. NaHCO3, and brine and dried over Na2SO4. The solvent was removed under reduced pressure to give crude product, which was purified by silica gel column chromatography eluting with 1% MeOH in CHCl3 to give 2 (85.5 mg, 98%) as yellow powders. The ee was determined to be 81% by HPLC analysis (at a wavelength of 224 nm) using a CHIRALCEL OD-H (250 mm, 4.6 mm) eluting with EtOH at a flow rate of 1.0 mL/min. t
R [20 (R)-FluoroCPT (2)] = 11.5 min, t
R [20(S)-FluoroCPT (2)] = 14.5 min. 1H NMR (270 MHz, CDCl3): δ = 8.43 (s, 1 H), 8.25 (d, J = 8.6 Hz, 1 H), 7.96 (d, J = 7.6 Hz, 1 H), 7.86 (t, J = 7.6 Hz, 1 H), 7.69 (t, J = 7.6 Hz, 1 H), 7.55 (s, 1 H), 5.51 (AB q, J = 16.5 Hz, 2 H, Δν = 106.4 Hz), 5.33 (s, 2 H), 2.14 (dq, J = 21.3, 7.3 Hz, 2 H), 1.13 (t, J = 7.3 Hz, 3 H). 19F NMR (254 MHz, CDCl3): δ = -163.16 (t, J = 21.3 Hz). ESI-MS: m/z = 350 [M+]; found: 351 [M+ + 1]. IR (KBr): 1765, 1659, 1609 cm-1. Anal. Calcd for C20H15FN2O3: C, 68.57; H, 4.32; N, 8.00. Found: C, 68.68; H, 4.23; N, 7.97.
20(S)-FluoroCPT (2, 92% ee, recrystallized from MeOH-CHCl3): mp 256-258 °C (MeOH-CHCl3). [a]D
26 +71.6 (c 0.153, CHCl3). CD (c 0.054 mmol dm-3, MeOH, 26 °C) Δε/dm3 mol-1 cm-1 (λ/nm): 0 (402.0), -1.24 (357.0), 0 (312.3), +0.46 (304.2), +0.17 (290.2), +16.2 (231.6), +5.12 (221.0).
20(R)-FluoroCPT (2, 98% ee, recrystallized from MeOH-CHCl3): mp 257-259 °C (MeOH-CHCl3). [a]D
26 -75.8 (c 0.172, CHCl3). CD (c 0.054 mmol dm-3, MeOH, 26 °C) Δε/dm3 mol-1 cm-1 (λ/nm) +0.02 (402.0), +1.36 (354.2), 0 (311.9), -0.48 (302.8), -0.13 (287.8), -17.4 (231.8), -8.47 (221.0).
CPT 1: CD (c 0.054 mmol dm-3, MeOH, 26 °C) Δε/dm3 mol-1 cm-1 (λ/nm) -0.06 (402.0), -1.88 (360.8), 0 (309.3), +0.32 (304.2), 0 (291.3), -0.08 (288.8), 0 (284.5), +18.2 (232.8), +6.10 (221.0).
In initial cytotoxicity study, both 20(S)- and 20(R)-fluoroCPT (2) were evaluated on three human cancer cell lines (KB, A549 and HT-29) and they appeared to be less active than CPT (1). Further biological study using pure enantiomer of 2 is now under considerations.