References
<A NAME="RD10004ST-1">1</A>
Moriarty RM.
Prakash O.
Acc. Chem. Res.
1986,
19:
244
<A NAME="RD10004ST-2">2</A>
Milas NA.
Plesnicar B.
J. Am. Chem. Soc.
1968,
90:
4450
<A NAME="RD10004ST-3A">3a</A>
Ochiai M.
Ito T.
Masaki Y.
Shiro M.
J. Am. Chem. Soc.
1992,
114:
6269
<A NAME="RD10004ST-3B">3b</A>
Ochiai M.
Ito T.
Takahaski H.
Nakanishi A.
Toyorani M.
Sueda T.
Goto S.
Shiro M.
J. Am. Chem. Soc.
1996,
118:
7716
<A NAME="RD10004ST-3C">3c</A>
Ochiai M.
Kajisma D.
Sueda T.
Tetrahedron Lett.
1999,
40:
5541
<A NAME="RD10004ST-3D">3d</A>
Ochiai M.
Sueda T.
Fukuda S.
Org. Lett.
2001,
3:
2387
<A NAME="RD10004ST-4">4</A>
Tohma H.
Morioka H.
Harayama Y.
Hashizume M.
Kita Y.
Tetrahedron Lett.
2001,
42:
6899
<A NAME="RD10004ST-5">5</A>
Catir M.
Kilic H.
Synlett
2003,
1180
<A NAME="RD10004ST-6">6</A>
General Procedure for Oxidation of Arenes with PIFA/TBHP System: (Caution! Although we have never experienced explosion, the oxidation of arenes with
TBHP/PIFA system was carried out behind shields.) To a solution of arene (2 mmol)
and anhyd TBHP (10 mmol) in 10 mL of CH2Cl2 at -30 °C was added NaHCO3 (5 mmol). Then, a freshly prepared solution of PIFA (3 mmol) in 10 mL of CH2Cl2 was added within 2 h. The temperature was slowly increased to r.t. within 1 h. The
suspension was filtered and the solution was washed with sat. NaHCO3 solution and H2O. The organic layer was dried over MgSO4 and the solvent was removed at reduced pressure (5 °C/50 mbar). The products were
purified on a silica gel column (40 g) by eluting with hexane-EtOAc (90:10). First
fractions gave iodobenzene. Further elution afforded analytically pure quinones. In
the case of 5a, 2-methyl- and 6-methyl-1,4-naphthoquinone could not be separated. Compound 5b was obtained from the mixture by crystallization from EtOH. The mixture of both naphthoquinones
5b and 5c was also directly analyzed by 1H NMR and GC-MS (equipped with a non-polar column using EI ionization at 70 eV). Compound
5b: 1H NMR (400 MHz, CDCl3): δ = 2.18 (d, 3 H, J = 1.5 Hz), 6.83 (q, 1 H, J = 1.5 Hz), 7.68-7.75 (m, 2 H), 8.01-8.12 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 187.5, 186.9, 150.1, 137.6, 135.6, 135.5, 134.2, 134.1, 128.5, 128.0, 18.4.
Compound 6b: 1H NMR (200 MHz, CDCl3): δ = 2.11 (s, 6 H), 7.60-7.64 (AA part of AA′BB′ system, 2 H), 8.01-7.97 (BB′ part
of AA′BB′ system, 2 H). 13C NMR (50 MHz, CDCl3): δ = 185.6, 144.2, 134.1, 133.0, 127.0, 13.7. Compound 6c: 1H NMR (200 MHz, CDCl3): δ = 2.40 (s, 6 H), 6.90 (s, 2 H), 7.82 (s, 2 H). 13C NMR (50 MHz, CDCl3): δ = 186.2, 144.6, 139.4, 130.8, 128.5, 21.1. Compound 7b: 1H NMR (200 MHz, CDCl3): δ = 3.89 (s, 3 H), 6.15 (s, 1 H), 7.76-7.65 (m, 2 H), 8.12-8.03 (m, 2 H). 13C NMR (50 MHz, CDCl3): δ = 185.6, 180.9, 161.3, 135.2, 134.2, 132.9, 132.0, 127.5, 127.0, 110.8, 57.3.
Compound 10b: 1H NMR (200 MHz, CDCl3): δ = 6.62 (s, 2 H), 7.73 (s, 4 H). 13C NMR (50 MHz, CDCl3): δ = 180.4, 157.3, 148.6, 136.1, 124.9, 116.8.
<A NAME="RD10004ST-7">7</A>
Adam W.
Herrmann W.-A.
Lin J.
Saha-Moller C.-R.
Fischer R.-W.
Correia JD.-G.
Angew. Chem., Int. Ed. Engl.
1994,
33:
2475
<A NAME="RD10004ST-8">8</A>
Song R.
Sorokin A.
Bernadou J.
Meunier B.
J. Org. Chem.
1997,
62:
673
<A NAME="RD10004ST-9">9</A>
Skarzewski J.
Tetrahedron
1984,
40:
4997
<A NAME="RD10004ST-10">10</A>
Adam W.
Ganeshpure P.-A.
Synthesis
1993,
280
<A NAME="RD10004ST-11">11</A>
Adam W.
Balci M.
Kilic H.
J. Org. Chem.
1998,
63:
8544
<A NAME="RD10004ST-12">12</A>
Adam W.
Haas W.
Asmus K.-D.
J. Am. Chem. Soc.
1991,
113:
6202
<A NAME="RD10004ST-13A">13a</A>
Howard JA.
The Chemistry of Peroxides
Wiley;
New York:
1983.
<A NAME="RD10004ST-13B">13b</A>
Howard JA.
Ingold KU.
J. Am. Chem. Soc.
1968,
90:
1056