References
<A NAME="RD14404ST-1A">1a</A>
Heathcock CH.
Pirrung MC.
Buse CT.
Hagen JP.
Young SD.
Sohn JE.
J. Am. Chem. Soc.
1979,
101:
7077
<A NAME="RD14404ST-1B">1b</A>
Masamune S.
Ali SA.
Snitman DL.
Garvey DS.
Angew. Chem., Int. Ed. Engl.
1980,
19:
557
<A NAME="RD14404ST-1C">1c</A>
Masamune S.
Choy W.
Kerdersky FAJ.
Imperiali B.
J. Am. Chem. Soc.
1981,
103:
1566
<A NAME="RD14404ST-1D">1d</A>
Van Draanen NA.
Arseniyadis S.
Crimmins MT.
Heathcock CH.
J. Org. Chem.
1991,
56:
2499
Paterson nicely established the synthetic utility of lactate-derived ketones in stereoselective
syn and anti boron-mediated aldol reactions. See
<A NAME="RD14404ST-2A">2a</A>
Paterson I.
Wallace DJ.
Velázquez SM.
Tetrahedron Lett.
1994,
35:
9083
<A NAME="RD14404ST-2B">2b</A>
Paterson I.
Wallace DJ.
Tetrahedron Lett.
1994,
35:
9087
<A NAME="RD14404ST-2C">2c</A>
Paterson I.
Wallace DJ.
Cowden CJ.
Synthesis
1998,
639
<A NAME="RD14404ST-3A">3a</A>
Figueras S.
Martín R.
Romea P.
Urpí F.
Vilarrasa J.
Tetrahedron Lett.
1997,
38:
1637
<A NAME="RD14404ST-3B">3b</A>
Solsona JG.
Romea P.
Urpí F.
Vilarrasa J.
Org. Lett.
2003,
5:
519
<A NAME="RD14404ST-3C">3c</A>
Solsona JG.
Romea P.
Urpí F.
Tetrahedron Lett.
2004,
45:
5379
<A NAME="RD14404ST-4">4</A>
Masamune S.
Choy W.
Petersen JS.
Sita LR.
Angew. Chem., Int. Ed. Engl.
1985,
24:
1
<A NAME="RD14404ST-5A">5a</A>
Heathcock CH.
White CT.
J. Am. Chem. Soc.
1979,
101:
7076
<A NAME="RD14404ST-5B">5b</A>
Evans DA.
Dart MJ.
Duffy JL.
Rieger DL.
J. Am. Chem. Soc.
1995,
117:
9073
<A NAME="RD14404ST-5C">5c</A>
Marco JA.
Carda M.
Díaz-Oltra S.
Murga J.
Falomir E.
Roeper H.
J. Org. Chem.
2003,
68:
8577
<A NAME="RD14404ST-6">6</A> For an early example based on α-OTBDPS chiral aldehyde, see:
Esteve C.
Ferreró M.
Romea P.
Urpí F.
Vilarrasa J.
Tetrahedron Lett.
1999,
40:
5083
<A NAME="RD14404ST-7">7</A>
Ferreró M.
Galobardes M.
Martín R.
Montes T.
Romea P.
Rovira R.
Urpí F.
Vilarrasa J.
Synthesis
2000,
1608
<A NAME="RD14404ST-8">8</A>
Roush WR.
Palkowitz AD.
Ando K.
J. Am. Chem. Soc.
1990,
112:
6348
<A NAME="RD14404ST-9">9</A> All new compounds have analytical and spectroscopic data consistent with the
assigned structure. The absolute configurations were initially established by analogy
and those of 5, 6, 9, 10, and 11 have been later confirmed by spectroscopic analysis of cyclic derivatives. See, for
instance, ref. 3c
<A NAME="RD14404ST-10">10</A>
As expected, the minor diastereomer observed in all cases is the alternative 4,5-syn isomer. No significant amounts of anti adducts were indeed detected throughout the overall study.
<A NAME="RD14404ST-11">11</A>
Roush WR.
J. Org. Chem.
1991,
56:
4151
<A NAME="RD14404ST-12">12</A>
Overall yields of purified materials are indicated. Diastereomeric ratios have been
established through HPLC and NMR analysis.
<A NAME="RD14404ST-13">13</A>
Solsona JG.
Romea P.
Urpí F.
Org. Lett.
2003,
5:
4681
<A NAME="RD14404ST-14">14</A>
Tatsuta K. In Recent Progress in the Chemical Synthesis of Antibiotics
Lukacs G.
Ohno M.
Springer-Verlag;
Berlin:
1990.
For recent examples, see the following reports and references therein:
<A NAME="RD14404ST-15A">15a</A>
Evans DA.
Kim AS.
Metternich R.
Novack VJ.
J. Am. Chem. Soc.
1998,
120:
5921
<A NAME="RD14404ST-15B">15b</A>
Hergenrother PJ.
Hodgson A.
Judd AS.
Lee
W.-C.
Martin SF.
Angew. Chem. Int. Ed.
2003,
42:
3278
<A NAME="RD14404ST-15C">15c</A>
Peng Z.-H.
Woerpel KA.
J. Am. Chem. Soc.
2003,
125:
6018
<A NAME="RD14404ST-16A">16a</A>
Stork G.
Paterson I.
Lee FKC.
J. Am. Chem. Soc.
1982,
104:
4686
<A NAME="RD14404ST-16B">16b</A>
Burke SD.
Schoenen FJ.
Murtiashaw CW.
Tetrahedron Lett.
1986,
27:
449
<A NAME="RD14404ST-16C">16c</A>
Stork G.
Rychnovsky SD.
J. Am. Chem. Soc.
1987,
109:
1565
<A NAME="RD14404ST-16D">16d</A>
Nakata M.
Arai M.
Tomooka K.
Ohsawa N.
Kinoshita M.
Bull. Chem. Soc. Jpn.
1989,
62:
2618
<A NAME="RD14404ST-16E">16e</A>
Kochetkov NK.
Sviridov AF.
Ermolenko MS.
Yashunsky DV.
Borodkin VS.
Tetrahedron
1989,
45:
5109
<A NAME="RD14404ST-16F">16f</A>
Tone H.
Nishi T.
Oikawa Y.
Hikota M.
Yonemitsu O.
Chem. Pharm. Bull.
1989,
37:
1167
<A NAME="RD14404ST-16G">16g</A>
Mulzer J.
Kirstein HM.
Buschmann J.
Lehmann C.
Luger P.
J. Am. Chem. Soc.
1991,
113:
910
<A NAME="RD14404ST-16H">16h</A>
Hoffmann RW.
Stürmer R.
Chem. Ber.
1994,
127:
2511
<A NAME="RD14404ST-17A">17a</A>
Narasaka K.
Pai F.-C.
Tetrahedron
1984,
40:
2233
<A NAME="RD14404ST-17B">17b</A>
Chen K.-M.
Hardtmann GE.
Prasad K.
Repic O.
Shapiro MJ.
Tetrahedron Lett.
1987,
28:
155
<A NAME="RD14404ST-18">18</A>
Nakata T.
Tani Y.
Hatozaki M.
Oishi T.
Chem. Pharm. Bull.
1984,
32:
1411
<A NAME="RD14404ST-19">19</A>
Kiyooka S.-i.
Kuroda H.
Shimasaki Y.
Tetrahedron Lett.
1986,
27:
3009
<A NAME="RD14404ST-20">20</A>
The relative 3,4-syn-4,5-syn configuration was secured by NMR studies of the dioxane moiety.
<A NAME="RD14404ST-21">21</A>
Unexpectedly, this step turned out to be troublesome. Debenzylation with Pd(OH)2/C was sluggish in EtOAc and afforded a complex mixture in MeOH. Better results (60%
yield) were obtained with 10% Pd/C in EtOH, although it was not possible to prevent
partial removal of acetonide protecting group and the corresponding triol was produced
in 25% yield. Finally, alcohol 16 was isolated in excellent yield (91%) after 3 h in EtOAc.
<A NAME="RD14404ST-22">22</A>
Physical and spectroscopic data of ketone 13 are in agreement with those previously reported. See ref. 16a, 16f. Compound 13: colorless oil. Rf (hexanes-EtOAc 85:15) = 0.45. [α]D +23.1 (c 1.8, CHCl3). IR (film): ν = 2933, 1717, 1111, 1017 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.66-7.54 (4 H, m, ArH), 7.43-7.36 (6 H, m, ArH), 4.22 (1 H, d, J = 2.5 Hz, CH3COCHO), 3.73 (1 H, dd, J = 9.6 Hz, J = 1.9 Hz, CHOCHCH2OSi), 3.57 (1 H, dd, J = 10.3 Hz, J = 4.3 Hz, CHxHyOSi), 3.49 (1 H, dd, J = 10.3 Hz, J = 5.7 Hz, CHxHyOSi), 2.12 (3 H, s, CH3CO), 2.03-1.95 [1 H, m, OHCCH(CH3)CHO], 1.83-1.78 (1 H, m, CHCH2OSi), 1.48 (3 H, s, CH3CCH3), 1.41 (3 H, s, CH3CCH3), 1.06 [9 H, s, SiC(CH3)3], 1.05 (3 H, d, J = 6.8 Hz, CH3CHCH2OSi), 0.70 [3 H, d, J = 6.6 Hz, OHCCH(CH3)CHO]. 13C NMR (100.6 MHz, CDCl3): δ = 209.3 (C), 135.6 (CH), 135.5 (CH), 133.5 (C), 133.4 (C), 129.7 (CH), 127.7
(CH), 127.6 (CH), 99.4 (C), 79.4 (CH), 75.2 (CH), 64.9 (CH2), 36.7 (CH), 32.4 (CH), 29.8 (CH3), 27.0 (CH3), 26.8 (CH3), 19.3 (C), 19.1 (CH3), 14.2 (CH3), 6.5 (CH3). HRMS (+FAB): m/z calcd for C28H41O4Si [M + H]+: 469.2774. Found: 469.2762.