Abstract
A novel triene linker system, that can be cleaved by a tandem ring-closing metathesis
(RCM) reaction, is presented. The tandem RCM cleavage, that regenerates the active
ruthenium catalyst without the need of additives like ethylene, proceeded very clean
and fast to liberate cyclopent-2-enyl mannosides from the solid support. A cyclopent-2-enyl
mannoside was isomerized to the corresponding vinyl ether glycoside, which could be
readily deprotected by iodine-mediated hydrolysis.
Key words
glycosylations - linker - metathesis - ruthenium - solid-phase
References <A NAME="RG15004ST-1">1 </A>
These authors contributed equally to this work.
<A NAME="RG15004ST-2A">2a </A>
Kanemitsu T.
Kanie O.
Trends Glycosci. Glyc.
1999,
11:
267
<A NAME="RG15004ST-2B">2b </A>
Seeberger PH.
Haase WC.
Chem. Rev.
2000,
100:
4349
<A NAME="RG15004ST-2C">2c </A>
Plante OJ.
Palmacci ER.
Seeberger PH.
Science
2001,
291:
1523
<A NAME="RG15004ST-2D">2d </A>
Sears P.
Wong C.-H.
Science
2001,
291:
2344
<A NAME="RG15004ST-2E">2e </A>
Kanemitsu T.
Kanie O.
Comb. Chem. High Throughput Screening
2002,
5:
339
<A NAME="RG15004ST-2F">2f </A>
Randell KD.
Barkley A.
Arya P.
Comb. Chem. High Throughput Screening
2002,
5:
179
<A NAME="RG15004ST-2G">2g </A>
Solid Support Oligosaccharide Synthesis and Combinatorial Carbohydrate Libraries
Seeberger PH.
Wiley;
New York:
2001.
<A NAME="RG15004ST-2H">2h </A>
Khersonsky SM.
Ho CM.
Garcia MAF.
Chang YT.
Curr. Top. Med. Chem.
2003,
3:
617
<A NAME="RG15004ST-2I">2i </A>
Franzen R.
Tois J.
Comb. Chem. High Throughput Screening
2003,
6:
433
<A NAME="RG15004ST-2J">2j </A>
Plante OJ.
Seeberger PH.
Curr. Opin. Drug Discovery Dev.
2003,
6:
521
<A NAME="RG15004ST-3A">3a </A>
Gordon K.
Balasubramanian S.
J. Chem. Technol. Biotechnol.
1999,
74:
835
<A NAME="RG15004ST-3B">3b </A>
Brown AR.
Hermkens PHH.
Ottenheijm HCJ.
Rees DC.
Synlett
1998,
817
<A NAME="RG15004ST-4A">4a </A>
Ivin KJ.
Mol JC.
Olefin Metathesis and Olefin Metathesis Polymerization
1st ed.:
Academic Press;
London:
1997.
<A NAME="RG15004ST-4B">4b </A>
Fürstner A.
Top. Catal.
1997,
4:
285
<A NAME="RG15004ST-4C">4c </A>
Schuster M.
Blechert S.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2037
<A NAME="RG15004ST-4D">4d </A>
Grubbs RH.
Chang S.
Tetrahedron
1998,
54:
4413
<A NAME="RG15004ST-4E">4e </A>
Armstrong SK.
J. Chem. Soc., Perkin Trans. 1
1998,
371
<A NAME="RG15004ST-4F">4f </A>
Ivin KJ.
J. Mol. Catal. A
1998,
133:
1
<A NAME="RG15004ST-4G">4g </A>
Pandit UK.
Overkleeft HS.
Borer BC.
Bieräugel H.
Eur. J. Org. Chem.
1999,
959
<A NAME="RG15004ST-4H">4h </A>
Wright DL.
Curr. Org. Chem.
1999,
3:
211
<A NAME="RG15004ST-4I">4i </A>
Blechert S.
Pure Appl. Chem.
1999,
71:
1393
<A NAME="RG15004ST-4J">4j </A>
Jørgensen P.
Hadwiger P.
Madsen R.
Stütz AE.
Wrodnigg TM.
Curr. Org. Chem.
2000,
4:
565
<A NAME="RG15004ST-4K">4k </A>
Roy R.
Das SK.
Chem. Commun.
2000,
519
<A NAME="RG15004ST-4L">4l </A>
Fürstner A.
Angew. Chem. Int. Ed.
2000,
39:
3013
<A NAME="RG15004ST-4M">4m </A>
Hoveyda AH.
Schrock RR.
Chem.-Eur. J.
2001,
7:
945
<A NAME="RG15004ST-4N">4n </A>
Schrock RR.
Hoveyda AH.
Angew. Chem. Int. Ed.
2003,
42:
4592
<A NAME="RG15004ST-4O">4o </A>
Connon SJ.
Blechert S.
Angew. Chem. Int. Ed.
2003,
42:
1900
<A NAME="RG15004ST-4P">4p </A>
Leeuwenburgh MA.
Van der Marel GA.
Overkleeft HS.
Curr. Opin. Chem. Biol.
2003,
7:
757
<A NAME="RG15004ST-5A">5a </A>
Knerr L.
Schmidt RR.
Synlett
1999,
1802
<A NAME="RG15004ST-5B">5b </A>
Knerr L.
Schmidt RR.
Eur. J. Org. Chem.
2000,
2803
<A NAME="RG15004ST-5C">5c </A>
Andrade RB.
Plante OJ.
Melean LG.
Seeberger PH.
Org. Lett.
1999,
1:
1811
<A NAME="RG15004ST-5D">5d </A>
Melean LG.
Haase WC.
Seeberger PH.
Tetrahedron Lett.
2000,
41:
4329
<A NAME="RG15004ST-5E">5e </A>
Palmacci ER.
Plante OJ.
Hewitt MC.
Seeberger PH.
Helv. Chim. Acta
2003,
86:
3975
<A NAME="RG15004ST-5F">5f </A>
Kanemitsu T.
Seeberger PH.
Org. Lett.
2003,
5:
4541
<A NAME="RG15004ST-6">6 </A>
Van Maarseveen JH.
Den Hartog JAJ.
Engelen V.
Finner E.
Visser G.
Kruse CG.
Tetrahedron
1993,
49:
3665
<A NAME="RG15004ST-7A">7a </A>
Scholl M.
Trnka TM.
Morgan JP.
Grubbs RH.
Tetrahedron Lett.
1999,
40:
2247
<A NAME="RG15004ST-7B">7b </A>
Trnka TM.
Morgan JP.
Sanford MS.
Wilhelm TE.
Scholl M.
Choi TL.
Ding S.
Day MW.
Grubbs RH.
J. Am. Chem. Soc.
2003,
125:
2546
A combination of literature procedures was used:
<A NAME="RG15004ST-8A">8a </A>
Nagarkatti JP.
Ashley KR.
Tetrahedron Lett.
1973,
14:
4599
<A NAME="RG15004ST-8B">8b </A>
Hoye TR.
Suhadolnik JC.
Tetrahedron
1986,
42:
2855
<A NAME="RG15004ST-8C">8c </A>
Meier H.
Mayer W.
Kolshorn H.
Chem. Ber.
1987,
120:
685
<A NAME="RG15004ST-8D">8d </A>
Ruan Z.
Mootoo DR.
Tetrahedron Lett.
1999,
40:
49
<A NAME="RG15004ST-8E">8e </A>
Dabideen D.
Ruan Z.
Mootoo DR.
Tetrahedron
2002,
58:
2077
<A NAME="RG15004ST-9">9 </A> The loading was determined by spectroscopic analysis of a suspension of resin
(2.0-3.0 mg) in 3% TCA in CH2 Cl2 (50 mL): B = A477 ·V/(εlm), where B = loading (mmol/g), A = absorbance at λ = 477 nm, V = volume (mL),
ε = 56·103 M-1 m-1 , l = pathway length (cm), m = mass of resin (g). See also:
Will DW.
Langner D.
Knolle J.
Uhlmann E.
Tetrahedron
1995,
51:
12069
<A NAME="RG15004ST-10A">10a </A>
Yamazaki F.
Sato S.
Nukada T.
Ito Y.
Ogawa T.
Carbohydr. Res.
1990,
201:
31
<A NAME="RG15004ST-10B">10b </A>
Paulsen H.
Helpap B.
Carbohydr. Res.
1991,
216:
289
<A NAME="RG15004ST-10C">10c </A>
Mayer TG.
Schmidt RR.
Eur. J. Org. Chem.
1999,
1153