References
<A NAME="RG17404ST-1">1</A>
Thomson RH.
Naturally Occurring Quinones
2nd ed.:
Academic Press;
London:
1971.
<A NAME="RG17404ST-2">2</A>
Thomson RH.
Naturally Occurring Quinones III: Recent Advances
Chapman and Hall;
New York:
1987.
<A NAME="RG17404ST-3">3</A>
Thomson RH.
Naturally Occurring Quinones IV: Recent Advances
Chapman and Hall;
London:
1996.
<A NAME="RG17404ST-4A">4a</A>
Krapcho AP.
Petry ME.
Getahun Z.
Landi JJ.
Stallman J.
Polsenberg JF.
Gallagher CE.
Maresch MJ.
Hacker MP.
J. Med. Chem.
1994,
37:
828
<A NAME="RG17404ST-4B">4b</A>
Moreley JO.
Krapcho AP.
Cummings DS.
J. Chem. Soc., Perkin Trans. 2
1996,
287
<A NAME="RG17404ST-4C">4c</A>
Johnson MG.
Kiyokawa H.
Tani S.
Koyama J.
Morris-Natschke SL.
Mauger A.
Bowers-Drains MM.
Lange BC.
Lee K.-H.
Bioorg. Med. Chem.
1997,
5:
1469
<A NAME="RG17404ST-5">5</A>
Kokwaro JO.
Medicinal Plants of East Africa
East African Literature Bureau;
Kampala, Nairobi, Dar Es Salaam:
1976.
<A NAME="RG17404ST-6A">6a</A>
Parham WE.
Bradsher CK.
Edgar KJ.
J. Org. Chem.
1981,
46:
1057
<A NAME="RG17404ST-6B">6b</A>
Edgar KJ.
Bradsher CK.
J. Org. Chem.
1982,
47:
1585
<A NAME="RG17404ST-7">7</A>
Rozeboom MD.
Tegmo-Larsson I.-M.
Houk KN.
J. Org. Chem.
1981,
46:
2338
<A NAME="RG17404ST-8A">8a</A>
Kraus GA.
Cho H.
Crowley S.
Roth B.
Sugimoto H.
Prugh S.
J. Org. Chem.
1983,
48:
3439
<A NAME="RG17404ST-8B">8b</A>
Russell RA.
Pilley BA.
Synth. Commun.
1986,
16:
425
<A NAME="RG17404ST-8C">8c</A>
Okazaki K.
Nomura K.
Yoshii E.
Synth. Commun.
1987,
17:
1021
<A NAME="RG17404ST-9">9</A>
Baburao MB.
Subhash PK.
Hongming Z.
Edward RB.
J. Org. Chem.
1991,
56:
2846
<A NAME="RG17404ST-10A">10a</A>
Schmalz H.-G.
Angew. Chem., Int. Ed. Engl.
1995,
34:
1833
<A NAME="RG17404ST-10B">10b</A>
Schuster M.
Blechert S.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2036
<A NAME="RG17404ST-10C">10c</A>
Fürstner A.
Langemann K.
Synthesis
1997,
792
<A NAME="RG17404ST-10D">10d</A>
Grubbs RH.
Chang S.
Tetrahedron
1998,
54:
4413
<A NAME="RG17404ST-10E">10e</A>
Jorgensen M.
Hadwiger P.
Madsen R.
Stutz AE.
Wrodnigg TM.
Curr. Org. Chem.
2000,
4:
565
<A NAME="RG17404ST-10F">10f</A>
Felpin F.-X.
Lebreton J.
Eur. J. Org. Chem.
2003,
3693
<A NAME="RG17404ST-10G">10g</A>
Grubbs RH.
Miller SJ.
Fu GC.
Acc. Chem. Res.
1995,
28:
446
<A NAME="RG17404ST-10H">10h</A>
Handbook of Metathesis
Vol 1-3:
Grubbs RH.
Wiley-VCH;
Berlin, Germany:
2003.
<A NAME="RG17404ST-10I">10i</A>
Kotha S.
Sreenivasachary N.
Indian J. Chem., Sect. B
2001,
40:
763
<A NAME="RG17404ST-11">11</A>
Kotha S.
Mandal K.
Tetrahedron Lett.
2004,
45:
2585
<A NAME="RG17404ST-12">12</A>
Nguyen Van T.
Debenedetti S.
De Kimpe N.
Tetrahedron Lett.
2003,
44:
4199
<A NAME="RG17404ST-13A">13a</A>
Brisson C.
Brassard P.
J. Org. Chem.
1981,
46:
1810
<A NAME="RG17404ST-13B">13b</A>
Barker D.
Brimble MA.
Do P.
Turner P.
Tetrahedron
2003,
59:
2441
<A NAME="RG17404ST-13C">13c</A>
Kesteleyn B.
Nguyen Van T.
De Kimpe N.
Tetrahedron
1999,
55:
2091
<A NAME="RG17404ST-13D">13d</A>
Kesteleyn B.
De Kimpe N.
J. Org. Chem.
2000,
65:
640
<A NAME="RG17404ST-14">14</A>
Ainsworth C.
Kuo Y.-N.
J. Organomet. Chem.
1972,
59
<A NAME="RG17404ST-15">15</A>
As a representative example, the synthesis of 2,3-diallyl-1,4-naphthoquinone 6d is described. To a solution of naphthoquinone 5d (0.22 g, 1.4 mmol) in MeCN (20 mL), 3-butenoic acid (0.36 g, 4.2 mmol, 3.0 equiv)
was added at r.t., followed by the addition of a solution of AgNO3 (0.16 g, 0.93 mmol, 0.65 equiv) in distilled H2O (10 mL). The resulting mixture was heated to 75 °C and diammonium persulfate (1.31
g, 5.76 mmol, 4.00 equiv), dissolved in distilled H2O (10 mL), was added slowly, followed by a stirring period of 2 h at 75 °C. Evaporation
of the solvent, extraction of the residue with EtOAc (3 × 40 mL), drying (MgSO4), filtration of the drying agent and removal of the solvent in vacuo afforded the
crude naphthoquinone, which was purified by means of column chromatography (hexane-EtOAc
99:1) yielding 2,3-diallyl-1,4-naphthoquinone (6d) (0.22 g, 67%). Spectroscopic data of 2,3-diallyl-5,7-dimethoxy-1,4-naphthoquinone
(6a, 62%). Yellow crystals, mp 111 °C. Flash chromatography Rf = 0.08 (hexane-EtOAc 4:1). 1H NMR (270 MHz, CDCl3): δ = 3.35-3.40 (4 H, m), 3.93 and 3.96 (6 H, 2 × s), 5.03-5.23 (4 H, m), 5.79-5.93
(2 H, m), 6.71 (1 H, d, J = 2.3 Hz), 7.26 (1 H, d, J = 2.3 Hz). 13C NMR (67.8 MHz, CDCl3): δ = 30.60, 31.09, 55.90, 56.42, 102.93, 104.06, 116.62, 116.71, 133.99, 134.28,
136.06, 142.14, 147.04, 161.70, 164.40, 182.67, 184.90. IR (KBr): νC=O = 1651 cm-1. MS (70 eV): m/z (%) = 299 (100) [M+ + 1]. All other new compounds were fully characterized by 1H NMR, 13C NMR, IR and MS.
<A NAME="RG17404ST-16">16</A>
Ashnagar A.
Malcolm Bruce J.
Lloyd-Williams P.
J. Chem. Soc., Perkin Trans. 1
1988,
559
<A NAME="RG17404ST-17A">17a</A>
Araki S.
Katsumura N.
Butsugan Y.
J. Organomet. Chem.
1991,
415:
7
<A NAME="RG17404ST-17B">17b</A>
Hagiwara E.
Hatanaka Y.
Gohda K.-I.
Hiyama T.
Tetrahedron Lett.
1995,
36:
2773
<A NAME="RG17404ST-18">18</A>
Nguyen Van T.
Kesteleyn B.
De Kimpe N.
Tetrahedron
2001,
57:
4213
<A NAME="RG17404ST-19">19</A>
Naruta Y.
J. Am. Chem. Soc.
1980,
102:
3774
<A NAME="RG17404ST-20">20</A>
Motoyoshiya J.
Kameda T.
Asari M.
Miayamoto M.
Narita S.
Aoyama H.
Hayashi S.
J. Chem. Soc., Perkin Trans. 2
1997,
1845
<A NAME="RG17404ST-21">21</A>
As a representative example, the synthesis of 1,4-dihydro-9,10-anthraquinone 12d is described. To a solution of 2,3-diallyl-1,4-naphthoquinone (6d, 0.08 g, 0.330 mmol) in CH2Cl2 (35 mL), Grubbs’ catalyst was added [benzylidene-bis(tricyclohexylphosphine)dichlororuthenium,
0.02 g, 0.023 mmol, 0.07 equiv] at r.t. After heating under reflux for 12 h, the cooled
reaction mixture was filtered over silica gel and washed with CH2Cl2 (3 × 50 mL). Removal of the solvent in vacuo afforded pure 1,4-dihydro-9,10-anthraquinone
(12d, 0.06 g, 88%). Spectroscopic data of 1,4-dihydro-5,7-dimethoxy-9,10-anthraquinone
(12a, 91%). Yellow crystals, mp 191 °C. 1H NMR (270 MHz, CDCl3): δ = 3.19 (4 H, s), 3.94 and 3.96 (6 H, 2 × s), 5.84 (2 H, s), 6.71 (1 H, d, J = 2.2 Hz), 7.25 (1 H, d, J = 2.2 Hz). 13C NMR (67.8 MHz, CDCl3): δ = 24.15, 24.58, 55.89, 56.37, 102.97, 103.92, 114.43, 122.55, 123.09, 135.96,
138.78, 143.63, 161.71, 164.37, 182.75 and 184.60. IR (KBr): νC=O = 1652 cm-1. MS (70 eV): m/z (%) = 271 (100) [M+ + 1], 269 (48). All other new compounds were fully characterized by 1H NMR, 13C NMR, IR and MS.
<A NAME="RG17404ST-22">22</A>
As a representative example, the synthesis of 9,10-anthraquinone 13d is described. A solution of 1,4-dihydro-9,10-anthraquinone (12d, 50.70 mg, 0.238 mmol) and palladium on active carbon (10%) (25.3 mg, 0.024 mmol,
0.10 equiv) in dry toluene (10 mL) was refluxed for 12 h. The cooled reaction mixture
was filtered over Celite® and washed with CH2Cl2 (3 × 10 mL). Removal of the solvent in vacuo afforded the pure 9,10-anthraquinone
13d (46.50 mg, 94%). The anthraquinones 13 were recrystallized from EtOH. 1,3-Dimethoxy-9,10-anthraquinone (13a, 91%). The spectral data correspond well with those reported in the literature.
[23]
Yellow crystals, mp 159 °C (Lit.23 mp 158-160 °C). 1H NMR (270 MHz, CDCl3): δ = 3.99 and 4.02 (6 H, 2 × s), 6.80 (1 H, d, J = 2.3 Hz), 7.47 (1 H, d, J = 2.3 Hz), 7.67-7.81 (2 H, m), 8.20-8.29 (2 H, m). 13C NMR (67.8 MHz, CDCl3): δ = 56.44, 57.02, 103.81, 105.25, 116.60, 126.97, 127.69, 132.85, 133.30, 134.79,
135.63, 138.01, 163.09, 165.23, 181.76, 183.99. IR (KBr): νC=O = 1673 cm-1. MS (70 eV): m/z (%) = 269 (100) [M+ + 1].
<A NAME="RG17404ST-23">23</A>
Khanapure SP.
Reddy RT.
Biehl ER.
J. Org. Chem.
1987,
52:
5685