Synthesis 2004(15): 2560-2566  
DOI: 10.1055/s-2004-831235
PAPER
© Georg Thieme Verlag Stuttgart · New York

α-Methylene-β-trichloroacetylamino Alkanoates from Trichloroacetimidates of the Baylis-Hillman Adducts

Roberta Galeazzi, Gianluca Martelli, Mario Orena*, Samuele Rinaldi
Dipartimento di Scienze dei Materiali e della Terra, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
Fax: +39(071)2204714; e-Mail: m.orena@univpm.it;
Further Information

Publication History

Received 11 June 2004
Publication Date:
22 September 2004 (online)

Abstract

The Baylis-Hillman adducts 1 were treated with a large amount of CCl3CN in the presence of DBU without solvent to give in good yield the corresponding trichloroacetimidates 5 which by thermal [3.3]sigmatropic rearrangement were converted into the corresponding (E)-2-trichloroacetylaminomethyl-2-propenoates 6, exclusively. On the contrary, when compounds 5 were treated with a catalytic amount of DABCO in dichloromethane, 2-methylene-3-trichloroacetylamino esters 7 were obtained in good yield. Both 5a and 7a underwent iodocyclization, to give a cyclic intermediate precursor of a polyfunctionalized sequence, and the differences in stereoselectivity were in agreement with computational results.

    References

  • 1a Drewes SE. Roos GHP. Tetrahedron  1988,  44:  4653 
  • 1b Basavaiah D. Rao PD. Hyma RS. Tetrahedron  1996,  52:  8001 
  • 1c Ciganek E. Org. React.  1997,  51:  201 
  • 1d Basavaiah D. Rao AJ. Satyanarayana J. Chem. Rev.  2003,  103:  811 
  • 2a Morita K. Suzuki Z. Hirose H. Bull. Chem. Soc. Jpn.  1968,  41:  2815 
  • 2b Baylis AB, and Hillman MED. inventors; German Patent  2155113.  ; Chem. Abstr. 1972, 77, 34174
  • 3a Brzezinski LJ. Rafel S. Lehavy JW. J. Am. Chem. Soc.  1997,  119:  4317 
  • 3b Aggarwal VK. Mereu A. Tarver GJ. McCague R. J. Org. Chem.  1998,  63:  7183 
  • 3c Kataoka T. Iwama T. Tsujiyama S. Iwamura T. Watanabe S. Tetrahedron  1998,  54:  11813 
  • 3d Shi M. Jiang J.-K. Feng Y.-S. Org. Lett.  2000,  2:  2397 
  • 3e Yang K.-S. Chen K. Org. Lett.  2000,  2:  729 
  • 4 Ciclosi M. Fava C. Galeazzi R. Orena M. Sepulveda-Arques J. Tetrahedron Lett.  2002,  58:  2199 
  • For synthesis of similar compounds, see:
  • 5a Perlmutter P. Teo CC. Tetrahedron Lett.  1984,  25:  5951 
  • 5b Bertenshaw S. Kahn M. Tetrahedron Lett.  1989,  30:  2731 
  • 5c Cyrener J. Burger K. Monatsh. Chem.  1994,  125:  1279 
  • 5d Kündig EP. Xu LH. Schnell B. Synlett  1994,  413 
  • 5e Campi EM. Holmes A. Perlmutter P. Teo CC. Aust. J. Chem.  1995,  48:  1535 
  • 5f Richter H. Jung G. Tetrahedron Lett.  1998,  39:  2729 
  • 5g Bucholz R. Hoffmann HMR. Helv. Chim. Acta  1991,  74:  1213 
  • 5h Kim HS. Kim TY. Chung YM. Lee HJ. Kim JN. Tetrahedron Lett.  2000,  41:  2613 
  • 5i Rajesh S. Banerji B. Iqbal J. J. Org. Chem.  2002,  67:  7852 
  • 6a Galeazzi R. Mobbili G. Orena M. Tetrahedron  1996,  52:  1069 
  • 6b Galeazzi R. Geremia S. Mobbili G. Orena M. Tetrahedron: Asymmetry  1996,  7:  79 
  • 6c Galeazzi R. Geremia S. Mobbili G. Orena M. Tetrahedron: Asymmetry  1996,  7:  3573 
  • 6d Galeazzi R. Mobbili G. Orena M. Tetrahedron: Asymmetry  1997,  8:  133 
  • 6e Galeazzi R. Mobbili G. Orena M. Tetrahedron  1999,  55:  261 
  • 6f Galeazzi R. Mobbili G. Orena M. Tetrahedron  1999,  55:  4029 
  • 6g Galeazzi R. Martelli G. Mobbili G. Orena M. Rinaldi S. Tetrahedron: Asymmetry  2003,  14:  3353 
  • 6h Fava C. Galeazzi R. Mobbili G. Orena M. Tetrahedron: Asymmetry  2003,  14:  3697 
  • 7a Overman LE. J. Am. Chem. Soc.  1974,  96:  597 
  • 7b Overman LE. J. Am. Chem. Soc.  1976,  98:  2901 
  • 7c Mehmandust M. Petit Y. Larcheveque M. Tetrahedron Lett.  1992,  33:  4313 
  • 7d Martin C. Bortolussi M. Bloch R. Tetrahedron Lett.  1999,  40:  3735 
  • 8 Nishikawa T. Asai M. Ohyabu N. Isobe M. J. Org. Chem.  1998,  63:  188 
  • 9a Kang SH. Kim GT. Yoo YS. Tetrahedron Lett.  1997,  38:  603 
  • 9b Kang SH. Kim JS. Youn J.-H. Tetrahedron Lett.  1998,  39:  9047 
  • 10a An adduct of DBU with alkyl bromides has been already reported: Oediger H. Kabbe H. Moller F. Either K. Chem. Ber.  1966,  99:  2012 
  • 10b

    Spectral data for the adduct A: 1H NMR (CDCl3, 200 MHz): δ = 1.42-1.76 (m, 6 H), 1.78-1.92 (m, 2 H), 2.56-2.71 (m, 2 H), 3.15-3.39 (m, 6 H). 13C NMR (CDCl3, 50 MHz): δ = 19.5, 24.0, 26.8, 28.9, 32.0, 37.8, 48.7, 54.4, 77.2, 166.1.

  • 11a

    The reactivity of the Baylis-Hillman adducts agrees with the relative acidity of the hydroxy functionality obtained from calculations. All the geometries were optimized at DFT level of theory. Ab initio DFT calculations were carried out using the GAUSSIAN 98 program package. For DFT calculations the hybrid functional B3LYP, which contains gradient corrections for both exchange and correlation was chosen. The molecular electrostatic potential and the frontier molecular orbital were calculated for all the compounds showing no remarkable differences. The stability of both the reactants and the conjugate bases was calculated referring to the isodesmic reactions and the correlated pKa values and the geometry of both reactants and products were fully optimized at B3LYP/6-31G* theory level: 1c, ΔE 14.08 kcal/mol; 1d, ΔE 13.51 kcal/mol; 1b, ΔE 5.09 kcal/mol; 1e, ΔE 4.59 kcal/mol; 1a, ΔE 0.0 kcal/mol; 1g, ΔE -3.98 kcal/mol; 1i, ΔE -5.46 kcal/mol; 1h, ΔE -5.76 kcal/mol; 1k, ΔE -5.51 kcal/mol; 1j, ΔE -5.71 kcal/mol. For leading references, see:

  • 11b Weiner SJ. Kollman PA. Nguyen DT. Case DA. J. Comput. Chem.  1986,  7:  230 
  • 11c Chang G. Guida WC. Still WC. J. Am. Chem. Soc.  1989,  111:  4379 
  • 11d Mohamadi H. Richards NGJ. Guida WC. Liskamo R. Lipton M. Caulfield C. Chang G. Hendrickson T. Still WC. J. Comput. Chem.  1990,  11:  440 
  • 11e Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Zakrzewski VG. Montgomery JA. Stratmann RE. Burant JC. Dapprich S. Millan JM. Daniels AD. Kudin KN. Strain MC. Farkas O. Tomasi J. Barone V. Cossi M. Cammi R. Mennucci B. Pomelli C. Adamo C. Clifford S. Ochterski J. Patersson GA. Ayala PY. Cui Q. Morokuma K. Malik DK. Rabuck AD. Raghavachari K. Foresman JB. Cioslowski J. Ortiz JV. Baboul AG. Stefanov BB. Liu G. Liashenko A. Piskorz P. Komaromi I. Gomperts R. Martin RL. Fox DJ. Keith T. Al-Laham MA. Peng CY. Nanayakkara A. Challacombe M. Gill PMW. Johnson B. Chen W. Wong MW. Andres JL. Gonzales C. Head-Gordon M. Replogle ES. Pople J. Gaussian 98 Revision A.9   Gaussian Inc.; Pittsburgh: 1998. 
  • 11f Lee C. Yang W. Parr RG. Phys. Rev. B: Condens. Matter Mater. Phys.  1988,  37:  785 
  • 11g Becke AD. Phys. Rev. A: At., Mol., Opt. Phys.  1988,  38:  3098 
  • 11h Mihelich B. Savin A. Stoll H. Preuss H. Chem. Phys. Lett.  1989,  157:  200 
  • 11i Becke AD. J. Chem. Phys.  1993,  98:  5648 
  • 13 Foucaud A. El Guemmout F. Bull. Soc. Chim. Fr.  1989,  403 
  • 14 A concerted four-centers mechanism cannot be excluded, and investigation is currently underway. For a similar reaction recently reported in the literature, see: Mamaghani M. Badrian A. Tetrahedron Lett.  2004,  45:  1547 
  • 15a Cardillo G. Orena M. Tetrahedron  1990,  46:  3321 
  • 15b Orena M. Amination Reactions Promoted by Electrophiles, In Houben-Weyl, Methods of Organic Chemistry, Stereoselective Synthesis   Vol. E 2le:  Helmchen G. Hofmann RW. Mulzer J. Schauman E. Thieme; Stuttgart: 1995.  p.5291-5355  
  • 15c Jordá-Gregori JM. González-Rosende ME. Sepùlveda-Arques J. Galeazzi R. Orena M. Tetrahedron: Asymmetry  1999,  10:  1135 
  • 15d Jordà-Gregori JM. Gonzalez-Rosende ME. Cava-Montesinos P. Sepùlveda-Arques J. Galeazzi R. Orena M. Tetrahedron: Asymmetry  2000,  11:  3769 
12

It is worth mentioning that molecular mechanics calculations carried out for all compounds 5 indicate the presence of a number of conformers within a short energy range. Rotameric mixtures are evidenced by the 1H NMR spectra of the ethyl derivatives 5b,d,f,k, where a multiplet or a double quartet collapsing at 50 °C into a quartet takes place for the ethyl quartet.