Synlett 2004(11): 1990-1994  
DOI: 10.1055/s-2004-831180
LETTER
© Georg Thieme Verlag Stuttgart · New York

Amberlyst 15-Catalyzed Efficient Synthesis of 5-Acetyl-4-hydroxy-coumarone and 5-Acetyl-6-hydroxy-coumarone: Crucial Precursors for Several Naturally Occurring Furanoflavones [1]

Atul Goel*, Manish Dixit
Medicinal & Process Chemistry Division, Central Drug Research Institute, Lucknow 226001, India
Fax: +91(522)2223405; e-Mail: agoel13@yahoo.com;
Weitere Informationen

Publikationsverlauf

Received 14 May 2004
Publikationsdatum:
17. August 2004 (online)

Abstract

A novel approach to the total synthesis of naturally occurring furanoflavones and furanochalcones is described. Angular and linear furanoflavones and furanochalcones have been prepared in just four steps, using economical reagents and simple reaction conditions. The key step of our approach is the formation of crucial precursors, 5-acetyl-4-hydroxy-coumarone and 5-acetyl-6-hydroxy-coumarone by Amberlyst 15-catalyzed cyclization of phen­oxyacetal.

1

C.D.R.I. Commun. No. 6544; Indian patent application no.: CDRI/INF/PAT/01-2004 dated 07-01-2004.

    References

  • 2a Hooker JD. In The Flora of British India   Vol. II:  M/s Bishen Singh Mahendra Pal Singh; Dehradun (India): 1978.  p.110 
  • 2b Satyavati GV. Gupta AK. Tandon N. In Medicinal Plants of India   Vol. 2:  Indian Council of Medical Research; New Delhi (India): 1987.  p.490 
  • 2c Dey KL. Nair W. In The Indigenous Drugs of India   2nd Ed.:  The Chronica Botanica; New Delhi: 1973.  p.254 
  • 3a Wagner H. Farkas L. In The Flavonoids   Harborne JB. Mabry TJ. Mabry H. Academic Press; New York: 1975.  p.127 
  • 3b Gripenberg J. In The Chemistry of Flavonoids Compounds   Geissman TA. MacMillan; New York: 1962.  p.409 
  • 4a Tanaka T. Iinuma M. Yuki K. Fujii Y. Mizuno M. Phytochemistry  1992,  31:  993 
  • 4b Garcez FR. Scramin S. Nascimento MCD. Mors W. Phytochemistry  1988,  27:  1079 
  • 4c Talapatra SK. Mallik AK. Talapatra B. Phytochemistry  1980,  19:  1199 
  • 4d Roy D. Khanna RN. Indian J. Chem., Sect. B  1979,  18:  525 
  • 4e Rangaswami S. Sastry BV. Curr. Sci., India  1955,  24:  13 
  • 4f Lyra EA. De Mello JF. Gazz. Chim. Ital.  1979,  109:  93 
  • 5a Pelter A. Ward RS. Rao EV. Raju NR. J. Chem. Soc., Perkin Trans. 1  1981,  2491 
  • 5b Sinha B. Natu AA. Nanavati DD. Phytochemistry  1982,  21:  1468 
  • 5c Sharma P. Parthasarthy MR. Indian J. Chem., Sect. B  1977,  15:  866 
  • 6a Selway JWT. In Plant Flavonoids in Biology and Medicine   Middleton CVE. Harbone JB. Alan R. Liss Inc.; New York: 1986.  p.521 
  • 6b Rosenberg Zand RS. Jenkins DJA. Brown TJ. Diamandis EP. Clin. Chim. Acta  2002,  317:  17 
  • 6c Chang LC. Gerhaeuser C. Song L. Farnsworth NR. Pezzuto JM. Kinghorn AD. J. Nat. Prod.  1997,  60:  869 
  • 6d Hagiwara M. Inoue S. Tanaka T. Nunoki K. Ito M. Hidaka H. Biochem. Pharmacol.  1988,  37:  2987 
  • 6e Kiuchi F. Chen X. Tsuda Y. Kondo K. Kumar V. Shoyakugaku Zasshi  1989,  43:  42 
  • 6f Chopra RN. Nayar SL. Chopra IC. Glossary of Indian Medicinal Plants   C. S. I. R.; New Delhi: 1956.  p.241 
  • 7 Das Kanunga P. Ganguly A. Guha A. Bhattacharyya A. Adityachoudhury N. Phytochemistry  1987,  26:  3373 
  • 8 Ganguly A. Bhattacharyya A. Adityachoudhury N. Planta Med.  1988,  54:  90 
  • 9a Narayanaswami S. Rangaswami S. Seshadri TR. J. Chem. Soc.  1954,  1871 
  • 9b Khanna RN. Seshadri TR. Tetrahedron  1963,  19:  219 
  • 10 Davies JSH. McCrea PA. Norris WL. Ramage GR. J. Chem. Soc.  1950,  3206 
  • 11 Hossain MA. J. Bangla. Acad. Sci.  1999,  23:  9 
  • 12 Lee YK. Morehead AT. Tetrahedron  1995,  51:  4909 
  • 13a Dötz KH. Tomuschat P. Chem. Soc. Rev.  1999,  28:  187 
  • 13b Herndon JW. Coord. Chem. Rev.  2004,  248:  3 
  • 14a Bevis MJ. Forbest EJ. Naik NN. Uff BC. Tetrahedron  1971,  27:  1253 
  • 14b Barker P. Finke P. Thompson K. Synth. Commun.  1989,  19:  257 
  • 14c Pomeranz C. Monatsh. Chem.  1894,  15:  739 
  • 14d Stoermer R. Liebigs Ann.  1900,  312:  237 
  • 15 Coppola GM. Synthesis  1984,  1021 
  • 16a Allan J. Robinson R. J. Chem. Soc.  1924,  2129 
  • 16b Hoshino Y. Ohinata T. Takeno N. Bull. Chem. Soc. Jpn.  1986,  59:  2351 
  • 16c Hercouet A. Lecorre M. LeFloc’h Y. Synthesis  1982,  597 
  • 16d LeFloc’h Y. Lefeuvre M. Tetrahedron Lett.  1986,  5503 
  • 17a Baker W. J. Chem. Soc.  1933,  1381 
  • 17b Mahal HS. Venkataraman K. J. Chem. Soc.  1934,  1767 
1

C.D.R.I. Commun. No. 6544; Indian patent application no.: CDRI/INF/PAT/01-2004 dated 07-01-2004.

18

Synthesis of 5-Acetyl-4-hydroxy-coumarone ( 3) and 5-Acetyl-6-hydroxy-coumarone ( 4):
The 1-[4-(2,2-diethoxy-ethoxy)-2-hydroxy-phenyl]-ethanone (20 g, 0.075 mol) was refluxed in dry toluene (30 mL) with Amberlyst 15 (2.5 g) at 120 °C with concurrent removal of water using Dean-Stark trap for 8 h. The resulting reaction mixture was filtered and the resin was washed with excess of toluene. The filtrate thus obtained was concentrated to dryness and two pure compounds were isolated by silica gel column chromatography using EtOAc-hexane (1:10) as eluent, in 92% yield. Coumarone 3: yield 38%; mp 92-93 °C (lit. [12] 92-93 °C). MS (FAB): m/z = 177 [M+ + 1]. IR (KBr): 1640 (CO), 3421 (OH) cm-1. 1H NMR (200 MHz, CDCl3): δ = 2.66 (s, 3 H, CH3), 7.00 (d, J = 2.2 Hz, 1 H, H-3), 7.04 (d, 1 H, J = 8.8 Hz, H-7), 7.57 (d, 1 H, J = 2.2 Hz, H-2), 7.66 (d, 1 H, J = 8.8 Hz, H-6), 13.28 (s, 1 H, OH). Coumarone 4: yield 54%; mp 101-102 °C (lit. [10] 96 °C). MS (FAB): m/z = 177 [M+ + 1]. IR (KBr): 1638 (CO), 3426 (OH) cm-1. 1H NMR (200 MHz, CDCl3): δ = 2.70 (s, 3 H, CH3), 6.72 (d, 1 H, J = 2.2 Hz, H-3), 7.04 (s, 1 H, H-7), 7.56 (d, 1 H, J = 2.2 Hz, H-2), 8.00 (s, 1 H, H-4), 12.40 (s, 1 H, OH).

19

Spectroscopic Data of Other Intermediates and Products. Compound 5: yield 88%; mp 150-151 °C (lit. [9a] 146 °C). MS (FAB): m/z 281 [M+ + 1]. IR (KBr): 1606 (CO) cm-1. 1H NMR (200 MHz CDCl3): δ = 6.83 (s, 1 H, CH), 7.01 (d, 1 H, J = 2.2 Hz, H-3), 7.07 (d, 1 H, J = 8.8 Hz, H-7), 7.49-7.54 (m, 3 H, ArH), 7.58 (d, 1 H, J = 2.2 Hz, H-2), 7.73 (d, 1 H, J = 8.8 Hz, H-6), 7.95 (d, 2 H, J = 8.1 Hz, ArH), 13.05 (s, 1 H, OH), 15.45 (s, 1 H, OH). Compound 7: yield 92%; mp 127-128 °C (lit. [4e] 127 °C). MS (FAB): m/z = 263 [M+ + 1]. IR (KBr): 1646 (CO) cm-1. 1H NMR (200 MHz CDCl3): δ = 6.90 (s, 1 H, H-3), 7.23 (d, 1 H, J = 2.2 Hz, H-3′′), 7.56-7.60 (m, 4 H, H-6, H-3′,4′,5′), 7.78 (d, 1 H, J = 2.2 Hz, H-2′′), 7.96-8.00 (m, 2 H, H-2′,6′), 8.18 (d, 1 H, J = 8.8 Hz, H-5). Compound 9: yield: 88%; mp 155-156 °C. MS (FAB): m/z = 311 [M+ + 1]. IR (KBr): 1606 (CO) cm-1. 1H NMR (200 MHz CDCl3): δ = 3.90 (s, 3 H, OCH3), 6.74 (d, 1 H, J = 2.2 Hz, H-3), 6.82 (s, 1 H, CH), 7.01 (d, 2 H, J = 9.2 Hz, H-3′ and H-5′), 7.07 (s, 1 H, H-7), 7.55 (d, 1 H, J = 2.2 Hz, H-2), 7.94 (d, 2 H, J = 9.2 Hz, H-2′ and H-6′), 8.04 (s, 1 H, H-4), 12.30 (s, 1 H, OH), 15.64 (s, 1 H, OH). Anal. Calcd for C18H14O5: C, 69.67; H, 4.55. Found: C, 69.69; H, 4.56. Compound 11: yield 94%; mp 238-239 °C (lit. [7] 170-171 °C). MS (FAB): m/z = 293 [M+ + 1]. IR (KBr): 1630 (CO) cm-1. 1H NMR (200 MHz CDCl3): δ = 3.91 (s, 3 H, OCH3), 6.76 (s, 1 H, H-3), 6.93 (d, 1 H, J = 2.2 Hz, H-3′′), 7.05 (d, 2 H, J = 8.8 Hz, H-3′ and H-5′), 7.44 (s, 1 H, H-8), 7.67 (d, 1 H, J = 2.2 Hz, H-2′′), 7.92 (d, 2 H, J = 8.8 Hz, H-2′ and H-6′), 8.49 (s, 1 H, H-5). Anal. Calcd for C18H12O4: C, 73.97; H, 4.14. Found: C, 74.06; H, 4.17. Compound 12: yield 91%; mp 208-209 °C (lit. [8] 187-188 °C). MS (FAB): m/z = 293 [M+ + 1]. IR (KBr): 1635 (CO) cm-1. 1H NMR (200 MHz CDCl3): δ = 3.91 (s, 3 H, OCH3), 6.82 (s, 1 H, H-3), 6.92 (d, 1 H, J = 2.2 Hz, H-3′′), 7.09 (d, 1 H, J = 8.2 Hz, H-4′), 7.41-7.57 (m, 3 H, H-2′,H-5′ and H-6′), 7.69 (s, 1 H, H-8), 7.75 (d, 1 H, J = 2.2 Hz, H-2′′), 8.49 (s, 1 H, H-5). Compound 14: yield 85%; mp 129-130 °C (lit. [12] 130 °C). MS (FAB): m/z = 295 [M+ + 1]. IR (KBr): 1620 (CO) cm-1. 1H NMR (200 MHz CDCl3): δ = 4.14 (s, 3 H, OCH3), 6.99 (d, 1 H, J = 2.2 Hz, H-3), 7.16 (s, 1 H, CH), 7.32 (d, 1 H, J = 8.8 Hz, H-7), 7.45-7.51 (m, 3 H, ArH), 7.63 (d, 1 H, J = 2.2 Hz, H-2), 7.87 (d, 1 H, J = 8.8 Hz, H-6), 7.96-8.00 (m, 2 H, ArH), 16.91 (s, 1 H, OH).