Synlett 2004(11): 2037-2039  
DOI: 10.1055/s-2004-830895
LETTER
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Novel Azolo[1,2,3,5]thiatriazines

Elena V. Sadchikovaa, Vasiliy A. Bakulev*a, Wim Dehaen*b, Kristof Van Heckeb, Koen Robeynsb, Luc Van Meerveltb, Vladimir S. Mokrushina, Albert Padwac
a TOSLab, Urals State Technical University, 620002, Ekaterinburg, Russia
Fax: +7(343)3754135; e-Mail: bakulev@r66.ru;
b Department of Chemistry, University of Leuven, 3001 Leuven, Belgium
Fax: +32(16)327439; e-Mail: wim.dehaen@chem.kuleuven.ac.be;
c Department of Chemistry, Emory University, 1515 Pierce Drive, Atlanta GA 30322, USA
Fax: +1(404)7270283; e-Mail: chemap@emory.edu;
Further Information

Publication History

Received 28 May 2004
Publication Date:
04 August 2004 (online)

Abstract

The cycloaddition of diazoazoles with acylisothio­cyanates has been found to result in the formation of a 1,2,3,5-­thiatriazine ring. This new reaction was used to prepare novel 8-substituted 4-[benzoylimino-4H-imidazo(pyrazolo)][5,1-d]-[1,2,3,5]thiatriazines. The structures of the compounds prepared were carefully ­studied by X-ray diffraction, IR and NMR spectroscopy.

    References

  • 1 Bakulev VA. Dehaen W. The Chemistry of 1,2,3-Thiadiazoles, In The Chemistry of Heterocyclic Compounds, Series of Monographs   Taylor EC. Wipf P. Weissberger A. John Wiley and Sons, Inc.; New York: 2004. 
  • 2a Ege G. Gilbert K. Tetrahedron Lett.  1979,  44:  4253 
  • 2b Stevens MFG. Hickman JA. Stone R. Gibson NW. Baig GU. Lunt E. Newton CG. J. Med. Chem.  1984,  27 (2):  196 
  • 2c Cheng CC. Elslager EF. Werbel LM. Leopold WR. J. Med. Chem.  1986,  29:  1544 
  • 2d Lunt E. Newton CG. Smith C. Stevens GP. Stevens MFG. Straw CG. Walsh RJA. Warren PJ. Fizames C. Lavelle F. Langdon SP. Vickers LM. J. Med. Chem.  1987,  30:  357 
  • 2e Ege G. Gilbert K. Maurer K. Chem. Ber.  1987,  120 (8):  1375 
  • 2f Wang Y. Stevens MFG. Chan T.-M. DiBenedetto D. Ding Z.-X. Gala D. Hou D. Kugelman M. Leong W. Kuo S.-C. Mas JL. Schumacher DP. Schutts BP. Smith L. Zhan Z.-YJ. J. Org. Chem.  1997,  62:  7288 
  • 3a Hickman JA. Stevens MFG. Gibson NW. Langdon SP. Fizames C. Lavelle F. Atassi G. Lunt E. Tilson RM. Cancer Res.  1985,  45:  3008 
  • 3b Gibson NW. Hartley JA. Barnes D. Erickson LC. Cancer Res.  1986,  46:  4995 
  • 3c Stevens MFG. Hickman JA. Langdon SP. Chubb D. Vickers L. Stone R. Baig G. Goddard C. Gibson NW. Slack JA. Newton CG. Lunt E. Fizames C. Lavelle F. Cancer Res.  1987,  47:  5846 
  • 3d Bleehen NM. Newlands ES. Lee SM. Thatcher N. Selby P. Calvert AH. Rustin GJS. Brampton M. Stevens MFG. J. Clin. Oncol.  1995,  13:  910 
  • 3e Newlands ES. Stevens MFG. Wedge SR. Wheelhouse RT. Brock C. Cancer Treat. Rep.  1997,  23:  35 
  • 4 Barluenga J. Tomás M. Ballesteros A. López LA. Synthesis  1995,  985 
  • 5a Sadchikova EV. Mokrushin VS. Pospelova TA. Selezneva IS. Chem. Heterocycl. Compd.  1999,  35:  176 
  • 5b Bezmaternykh MA. Mokrushin VS. Sadchikova EV. Chem. Heterocycl. Compd.  2000,  36:  540 
  • 5c Sadchikova EV. Mokrushin VS. Mendeleev Commun  2002,  70 
  • 6a Shealy YF. Krauth ChA. Pittillo R. Hunt DE. J. Pharm. Sci.  1967,  56:  147 
  • 6b Mokrushin VS. Ofitserov VI. Rapakova TV. Tsaur AG. Pushkareva ZV. Chem. Heterocycl. Compd.  1976,  556 
  • 6c Sadchikova EV. Mokrushin VS. Russian Chemical Bulletin  2003,  52 (7):  1600 
  • 8a L’abbé G. Francis A. Dehaen W. Toppet S. J. Chem. Soc., Chem. Commun.  1995,  67 
  • 8b L’abbé G. Francis A. Dehaen W. Bosman J. Bull. Soc. Chim. Belg.  1996,  105:  253 
  • 8c L’abbé G. Francis A. Dehaen W. J. Chem. Soc., Perkin Trans. 1  1996,  1349 
  • 10 Huggins ML. J. Am. Chem. Soc.  1953,  75:  4126 
  • 11 Birney DM. Wagenseller PE. J. Am. Chem. Soc.  1994,  116:  6262 
  • 12 Bakulev VA. Kappe CO. Padwa A. Application of the 1,5-Electrocyclic Reaction in Heterocyclic Synthesis, In Organic Synthesis: Theory and Application   Vol. 3:  Hudlicky T. JAI Press; Greenwich: 1996.  p.149-229  
7

All melting points are uncorrected. IR spectra were recorded on a Perkin Elmer 1600 Series FTIR spectrometer in KBr pellets. The 1H NMR and 13C NMR spectra were recorded in [2H6]DMSO solution with Bruker WR-300 and Bruker DRX-400 spectrometer, 300 MHz and 400 MHz for 1H, 75 MHzand 100 MHz for 13C using TMS as internal standard.
Spectroscopic data for compound 4a: yield 84%; mp 146-148 °C. IR (KBr): νmax = 589.4, 666.5, 718.7, 772.9, 840.9, 1063.8, 1163.9, 1238.5, 1309.8, 1376.3, 1421.5, 1447.1, 1523.3, 1574.1, 1641.9, 1717.0, 2974.8, 3099.6 cm-1. 1H NMR (300.13 MHz, DMSO-d 6, 300 K): δ = 1.38 (t, J = 7.0 Hz, 3 H, OCH2CH3), 4.44 (q, J = 7.0 Hz, 2 H, OCH2CH3), 7.60-7.65 (m, 2 H, 3′,5′-H), 7.73-7.77 (m, 1 H, 4′-H), 8.27 (d, J = 7.3 Hz, 2 H, 2′,6′-H), 8.86 (s, 1 H, 6-H). 13C NMR (75.4 MHz, DMSO-δ6, 300 K): δ = 15.02, 63.31, 115.96, 129.98, 131.19, 134.22, 135.47, 143.55, 146.66, 158.62, 160.86, 178.0. Anal. Calcd for C14H11N5O3S: C, 51.06; H, 3.37; N, 21.26; S, 9.74. Found: C, 51.10; H, 3.39; N, 21.30; S, 9.66.
Spectroscopic data for compound 4b: yield 88%; mp 140-142 °C. IR (KBr): νmax = 547.5, 590.4, 649.5, 719.3, 809.7, 854.1, 949.7, 1018.9, 1049.6, 1175.9, 1225.7, 1276.0, 1321.8, 1381.3, 1464.9, 1521.5, 1593.8, 1643.7, 1725.1, 2931.4, 2985.1, 3062.6, 3121.9 cm-1. 1H NMR (400.13 MHz, DMSO-d 6, 298 K): δ = 1.38 (t, J = 7.0 Hz, 3 H, OCH2CH3), 4.46 (q, J = 7.0 Hz, 2 H, OCH2CH3), 7.63-7.60 (m, 2 H, 3′,5′-H), 7.78-7.71 (m, 1 H, 4′-H), 8.40 (d, 2 H, J = 7.0 Hz, 2′,6′-H), 9.55 (s, 1 H, 6-H). 13C NMR (100.62 MHz, DMSO-d 6, 298 K): δ = 14.2, 61.4, 129.0, 130.7, 132.1, 133.2, 134.1, 134.6, 134.7, 157.2, 160.2, 176.9. Anal. Calcd for C14H11N5O3S: C, 51.06; H, 3.37; N, 21.26; S, 9.74. Found: C, 51.03; H, 3.35; N, 21.21; S, 9.79.
Spectroscopic data for compound 4c: yield 76%; mp 144-146 °C. IR (KBr): νmax = 1530, 1575, 1600, 1620, 1650, 2875, 2930, 2960, 3050, 3075 cm-1. 1H NMR (250.13 MHz, DMSO-d 6, 298 K): δ = 2.88 (t, 3 H, J = 4.6 Hz, NHCH3), 7.64-7.58 (m, 3 H, 3′,4′,5′-H), 8.41 (d, 2 H, J = 7.0 Hz, 2′,6′-H), 8.65 (q, 1 H, J = 4.6 Hz, NHCH3), 9.55 (s, 1 H, 6-H). 13C NMR (100.62 MHz, DMSO-d 6, 298 K): δ = 26.0, 129.0, 130.7, 131.6, 132.8, 133.3, 134.6, 137.7, 157.6, 159.8, 176.8. Anal. Calcd for C13H10N6O2S: C, 49.68; H, 3.21; N, 26.74; S, 10.20. Found: C, 49.70; H, 3.20; N, 26.77; S, 10.25.
Spectroscopic data for compound 4d: yield 68%; mp 120-121 °C. IR (KBr): νmax = 1530, 1580, 1600, 1620, 1640, 2875, 2930, 2960, 3060, 3080 cm-1. 1H NMR (250.13 MHz, DMSO-d 6, 298 K): δ = 1.95-1.81 (m, 4 H, 2 CH2), 3.55-3.48 (m, 2 H, CH2), 3.66-3.58 (m, 2 H, CH2), 7.64-7.58 (m, 3 H, 3′,4′,5′-H), 8.40 (d, 2 H, J = 7.3 Hz, 2′,6′-H), 9.55 (s, 1 H, 6-H). 13C NMR (100.62 MHz, DMSO-d 6, 298 K): δ = 23.7, 25.6, 46.0, 48.0, 128.5, 129.0, 130.6, 131.7, 133.3, 134.6, 140.9, 157.5, 159.6, 176.8. Anal. Calcd for C16H14N6O2S: C, 54.23; H, 3.98; N, 23.71; S, 9.05. Found: C, 54.33; H, 4.02; N, 23.67; S, 9.01.
Spectroscopic data for compound 4e: yield 78%; mp 132-134 °C. IR (KBr): νmax = 1510, 1575, 1590, 1625, 1640, 2860, 2925, 2945 cm-1. 1H NMR (400.13 MHz, DMSO-d 6, 298 K): δ = 1.50-1.48 (m, 2 H, CH2), 1.67-1.59 (m, 4 H, 3 CH2), 3.44-3.41 (m, 2 H, CH2), 3.72-3.69 (m, 2 H, CH2), 7.64-7.60 (m, 2 H, 3′,5′-H), 7.78-7.74 (m, 1 H, 4′-H), 8.41 (d, 2 H, J = 8.2 Hz, 2′,6′-H), 9.58 (s, 1 H, 6-H). 13C NMR (100.62 MHz, DMSO-d 6, 298 K): δ = 23.9, 25.3, 26.2, 42.3, 47.4, 129.0, 130.6, 131.9, 132.0, 133.3, 134.6, 140.8, 157.4, 160.0, 176.7. Anal. Calcd for C17H16N6O2S: C, 55.42; H, 4.38; N, 22.81; S, 8.70. Found: C, 55.43; H, 4.34; N, 22.77; S, 8.74.
Spectroscopic data for compound 4f: yield 81%; mp 136-138 °C. IR (KBr): νmax = 1510, 1575, 1590, 1630, 1650, 2875, 2935, 2950 cm-1. 1H NMR (400.13 MHz, DMSO-d 6, 298 K): δ = 3.52-3.53 (m, 2 H, CH2), 3.57-3.58 (m, 2 H, CH2), 3.71-3.72 (m, 2 H, CH2), 3.74-3.75 (m, 2 H, CH2), 7.60-7.64 (m, 2 H, 3′,5′-H), 7.74-7.77 (m, 1 H, 4′-H), 8.41 (d, 2 H, J = 7.2 Hz, 2′,6′-H), 9.59 (s, 1 H, 6-H). 13C NMR (100.62 MHz, DMSO-d 6, 298 K): δ = 42.1, 47.0, 66.0, 66.4, 129.0, 130.6, 132.1, 132.3, 133.3, 134.6, 139.7, 157.3, 160.2, 176.8. Anal. Calcd for C16H14N6O3S: C, 51.89; H, 3.81; N, 22.69; S, 8.66. Found: C, 51.95; H, 3.84; N, 22.55; S, 8.60.

9

X-Ray Diffraction Study of 4a: Crystals were grown from EtOAc. All measurements were made on a Bruker SMART 6000 diffractometer equipped with a CCD detector using CuKα radiation (λ = 1.54178 Å). The crystal system of compound 5a (C14H11N5O3S, M = 329.34) is monoclinic, space group P21/c, a = 6.859 (1), b = 17.817 (3), c = 11.840 (2) Å, β = 99.79 (1)°, Z = 4, V = 1425.9 (4) Å3, D c = 1.534 g/cm3, F(000) = 680, crystal size: 0.10 × 0.10 × 0.25 mm, µ(CuKα) = 2.248 mm-1, T = 100 K, 12657 reflections collected, 2755 unique reflections, R int = 0.074. Final R indices: R 1 = 0.0423 for 2291 reflections with I>2σ(I) and R 1 = 0.0500, wR 2 = 0.1122 for all data. Crystallographic data (excluding structure factors) for this structure have been deposited with the Cambridge Crystallographic Data Centre. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44 (1223)336033; e-mail: deposit@ccdc.cam.ac.uk].