Synlett 2004(10): 1849-1850  
DOI: 10.1055/s-2004-829556
SPOTLIGHT
© Georg Thieme Verlag Stuttgart · New York

Methyltrioxorhenium (MTO)

Gianluca Soldaini*
Dipartimento di Chimica Organica ”Ugo Schiff”, Università degli Studi di Firenze, Polo Scientifico, via della Lastruccia 13, I-50019 Sesto Fiorentino (FI), Italy
e-Mail: gsoldaini@unifi.it;
Further Information

Publication History

Publication Date:
15 July 2004 (online)

Introduction

Methyltrioxorhenium (1) is an important and versatile catalyst widely studied as an oxygen transfer reagent in oxidation reactions of a variety of substrates. [1] The important features of MTO as a catalyst are its ease of synthesis, commercial availability and stability to air. MTO was firstly synthesized by Beattie and Jones in 1979. [2] Sub­sequently, Herrmann et al. developed a more simple and ­efficient synthesis based on the reaction of dirhenium ­heptoxide with methyltributyltin. [3]

MTO (1) reacts with H2O2, the usual stoichiometric ­oxidant, to give equilibria with formation of monoperoxo- and diperoxo-rhenium(VII) species (2 and 3, respectively). [4] The latter confers a characteristic yellow color to the solution and it is the most reactive towards oxygen-accepting substrates.

The MTO/H2O2 system makes use of nontoxic reagents, the oxidation and work-up procedures are very simple, water is the only byproduct, and non-aqueous solvent can be used if UHP (urea-hydrogenperoxide adduct) is used instead of H2O2 as the stoichiometric oxidant.

    References

  • For reviews, see:
  • 1a Romao CC. Kuhn FE. Herrmann WA. Chem. Rev.  1997,  97:  3197 
  • 1b Owens S. Arias J. Abu-Omar MM. Catal. Today  2000,  55:  317 
  • 1c Kuhn FE. Herrmann WA. Chemtracts  2001,  14:  59 
  • 2 Beattie IR. Jones PJ. Inorg. Chem.  1979,  18:  2318 
  • 3a HerrmannW A. Kuhn FE. Fischer RW. Thiel WR. Romo CC. Inorg. Chem.  1992,  31:  4431 
  • 3b Herrmann WA. Kratzer RM. Espenson JH. Wang W. Inorg. Synth.  2002,  33:  110 
  • 4a Yamazaki S. Espenson JH. Huston P. Inorg. Chem.  1993,  32:  4683 
  • 4b Abu-Omar MM. Hansen PJ. Espenson JH. J. Am. Chem. Soc.  1996,  118:  4966 
  • 5 Herrmann WA. Fischer RW. Marz DW. Angew. Chem., Int. Ed. Engl.  1991,  30:  1638 
  • 6 Rudolph J. Reddy KL. Chiang JP. Sharpless KB. J. Am. Chem. Soc.  1997,  119:  6189 
  • 7 Adolfsson H. Coperet C. Chiang JP. Yudin AK. J. Org. Chem.  2000,  65:  8651 
  • 8 Iskra J. Bonnet-Delbon D. Bégué J.-P. Tetrahedron Lett.  2002,  43:  1001 
  • 9 Wang T.-J. Li D.-C. Bai J.-H. Huang M.-Y. Jiang Y.-Y. J. Macromol. Sci., Pure Appl. Chem.  1998,  A35:  531 
  • 10 Adam W. Saha-Möller CR. Weichold O. J. Org. Chem.  2000,  65:  2897 
  • 11 Bouh AB. Espenson JH. J. Mol. Catal. A: Chem.  2003,  206:  37 
  • 12 Saladino R. Neri V. Pelliccia AR. Caminiti R. Sadun C. J. Org. Chem.  2002,  67:  1323 
  • 13 Saladino R. Neri V. Mincione E. Filippone P. Tetrahedron  2002,  58:  8493 
  • 14 Bernini R. Mincione E. Cortese M. Saladino R. Gualandi G. Belfiore MC. Tetrahedron Lett.  2003,  44:  4823 
  • 15a Goti A. Nannelli L. Tetrahedron Lett.  1996,  37:  6025 
  • 15b Soldaini G. Cardona F. Goti A. Org. Synth.  2004,  81: in press
  • 15c Yamazaki S. Bull. Chem. Soc. Jpn.  1997,  70:  877 
  • 15d Murray RW. Iyanar K. Chen J. Wearing JT. J. Org. Chem.  1996,  61:  8099 
  • 15e Zauche TH. Espenson JH. Inorg. Chem.  1997,  36:  5257 
  • 16a Soldaini G. Cardona F. Goti A. Tetrahedron Lett.  2003,  44:  5589 
  • 16b Boyd EC. Jones RVH. Quayle P. Waring AJ. Green Chem.  2003,  5:  679 
  • 17 Herrmann WA. Fischer RW. Correia JDG. J. Mol. Catal.  1994,  94:  213 
  • 18 Bernini R. Coratti A. Fabrizi G. Goggiamani A. Tetrahedron Lett.  2003,  44:  8991