Synthesis 2004(13): 2236-2239  
DOI: 10.1055/s-2004-829153
PSP
© Georg Thieme Verlag Stuttgart · New York

Facial-Selective Allylation of Methyl Ketones for the Asymmetric Synthesis of Tertiary Homoallylic Ethers

Lutz F. Tietze*, Sören Hölsken, Jens Adrio, Tom Kinzel, Christoph Wegner
Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
Fax: +49(551)399476; e-Mail: [email protected];
Further Information

Publication History

Received 7 April 2004
Publication Date:
14 July 2004 (online)

Abstract

The stereoselective allylation of methyl ketones is described to give tertiary homoallylic ethers, which can easily be transformed into homoallylic alcohols by a Birch reduction. Reaction of methyl ketones 4 with allylsilane 5 in the presence of the chiral TMS ether 3a and a catalytic amount of trifluoromethanesulfonic acid led to homoallylic ethers 6 in high yield with a selectivity of 9:1 to >20:1. The TMS ether 3a was prepared from inexpensive mandelic acid, which is commercially available in both enantiomeric forms, in four steps.

    References

  • 1a Catalytic Asymmetric Synthesis   Ojima I. Wiley-VCH; New York: 2000. 
  • 1b Marshall JA. Chem. Rev.  1996,  96:  31 
  • 1c Yanagisawa A. In Comprehensive Asymmetric Catalysis   Vol. 2:  Jacobsen EN. Pfaltz A. Yamamoto H. Springer; Berlin: 1999. 
  • 2a Denmark SE. Fu J. Chem. Rev.  2003,  103:  2763 
  • 2b Fürstner A. Voigtländer D. Synthesis  2000,  959 
  • 2c Batey RA. Thadani AN. Smil DV. Lough AJ. Synthesis  2000,  990 
  • 2d Yamamoto Y. Asao N. Chem. Rev.  1993,  93:  2207 
  • 2e Duthaler RO. Hafner A. Chem. Rev.  1992,  92:  807 
  • 2f Hoffmann RW. Weidmann U. Chem. Ber.  1985,  118:  3966 
  • 2g Brown HC. Jadhav PK. Bhat KS. J. Am. Chem. Soc.  1988,  110:  1535 
  • 2h Brown HC. Racherla US. Liao Y. Khanna VV. J. Org. Chem.  1992,  57:  6608 
  • 3a Riediker M. Duthaler RO. Angew. Chem., Int. Ed. Engl.  1989,  28:  494 
  • 3b Jadhav PK. Barth KS. Perumal PT. Brown HC. J. Org. Chem.  1986,  51:  432 
  • 4a Kii S. Maruoka K. Chirality  2003,  15:  68 
  • 4b Waltz KM. Gavenonis J. Walsh PJ. Angew. Chem. Int. Ed.  2002,  41:  3697 
  • 4c Casolari S. D’Addario D. Tagliavini E. Org. Lett.  1999,  1:  1061 
  • 5a Tietze LF. Wulff C. Wegner C. Schuffenhauer A. Schiemann K. J. Am. Chem. Soc.  1998,  120:  4276 
  • 5b Tietze LF. Schiemann K. Wegner C. Wulff C. Chem. Eur. J.  1996,  2:  1164 
  • 5c Tietze LF. Dölle A. Schiemann K. Angew. Chem., Int. Ed. Engl.  1992,  31:  1372 
  • 6a Tietze LF. Modi A. Med. Res. Rev.  2000,  4:  304 
  • 6b Tietze LF. Chem. Rev.  1996,  96:  115 
  • 6c Tietze LF. Beifuss U. Angew. Chem., Int. Ed. Engl.  1993,  32:  131 
  • 7a Tietze LF. Weigand B. Völkel L. Wulff C. Bittner C. Chem. Eur. J.  2001,  7:  161 
  • 7b Tietze LF. Völkel L. Wulff C. Weigand B. Bittner C. McGrath P. Johnson K. Schäfer M. Chem. Eur. J.  2001,  7:  1304 
  • 7c Tietze LF. Wegner C. Wulff C. Chem. Eur. J.  1999,  5:  2885 
  • 7d Tietze LF. Schiemann K. Wegner C. Wulff C. Chem. Eur. J.  1998,  4:  1862 
  • 7e Tietze LF. Wegner C. Wulff C. Eur. J. Org. Chem.  1998,  4:  1639 
  • 7f Tietze LF. Wegner C. Wulff C. Synlett  1996,  471 
  • 7g Tietze LF. Schiemann K. Wegner C. J. Am. Chem. Soc.  1995,  117:  5851 
  • 8 Tietze LF. Völkel L. Angew. Chem. Int. Ed.  2001,  40:  901 
  • 9 Hossain MT. Timberlake JW. J. Org. Chem.  2001,  66:  6282