Synthesis 2004(11): 1759-1766  
DOI: 10.1055/s-2004-829120
PAPER
© Georg Thieme Verlag Stuttgart · New York

Direct Reductive Alkylation of Amino Acids: Synthesis of Bifunctional Chelates for Nuclear Imaging

Murali K. Levadalaa, Sangeeta Ray Banerjeea, Kevin P. Marescab, John W. Babichb, Jon Zubieta*a
a Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
Fax: +1(315)4434070; e-Mail: jazubiet@syr.edu;
b Molecular Insight Pharmaceuticals, Inc., 160 Second St., Cambridge, MA 02142, USA
Further Information

Publication History

Received 30 February 2004
Publication Date:
01 July 2004 (online)

Abstract

A family of effective bifunctional chelators for technetium- and rhenium-based radiopharmaceuticals was conveniently synthesized in high yields through direct reductive N-alkylations of amino acids and their analogues with aldehydes, using NaBH(OAc)3 as an efficient reagent. The mono-, di-, tetra- and even mixed alkylated amino acid derivatives were all prepared in one-pot synthesis.

    References

  • 1 Fischman AJ. Babich JW. Strauss HW. J. Nucl. Med.  1993,  34:  2253 
  • 2a Yeh SM. Sherman DG. Meares CF. Anal. Biochem.  1979,  100:  152 
  • 2b Meares CF. Wensel TG. Acc. Chem. Res.  1984,  17:  202 
  • 2c Brechbiel MW. Gansow OA. Atcher RW. Schlom J. Esteban J. Simpson DE. Colcher D. Inorg. Chem.  1986,  25:  2772 ; and references cited therein
  • 2d Hnatowich DJ. Mardirossen A. Ruscowski M. Fargarasi M. Virji F. Winnard P. Nucl. Med. Chem.  1993,  34:  109 
  • 3 Vanbilloen HP. Bormans GM. DeRoo MJ. Verbruggen AM. Nucl. Med. Biol.  1995,  22:  325 ; and references cited therein
  • 4 Rao TN. Adhikesavalu D. Camerman A. Fritzberg AR. J. Am. Chem. Soc.  1990,  112:  5798 
  • 5 Meegalla SK. Plössl K. Kung M.-P. Chumpradit S. Stevenson DA. Kushner SA. McElgin WT. Mozley PD. Kung HF. J. Med. Chem.  1997,  40:  9 ; and references cited therein
  • 6 O’Neil JP. Wilson SR. Katzenellenbogen JA. Inorg. Chem.  1994,  33:  319 
  • 7a Rajagopalan R. Grummon GD. Bugaj J. Hallemann LS. Webb EG. Marmon ME. Vanderheyden JL. Srinivasan A. Bioconjugate Chem.  1997,  8:  407 
  • 7b Wong E. Fauconnier T. Bennett S. Valliant J. Nguyen T. Lau F. Lu LFL. Pollak A. Bell RA. Thornback JR. Inorg. Chem.  1997,  36:  5799 
  • 7c Pollak A. Roe DG. Pollock CM. Lu LFL. Thornback JR. J. Am. Chem. Soc.  1999,  121:  11593 
  • Numerous examples of peptide-based bifunctional chelators for the {Tc(V)O}3+ core have been described in recent years. Representative examples include:
  • 8a MAG3 types (MAG3 = mercaptoacetylglycylglycylglycine): Liu S. Edwards DS. Looby RJ. Poirier MJ. Rajopadhye M. Bourque JP. Carroll TR. Bioconjugate Chem.  1996,  7:  196 
  • 8b See also: Kasina S. Sanderson JA. Fitzner JN. Srinivasan A. Rao TN. Hobson LJ. Reno JM. Axworthy DB. Beaumier PL. Fritzberg AR. Bioconjugate Chem.  1998,  9:  108 
  • 8c See also: Van Domselaar GH. Okarvi SM. Fanta M. Suresh MR. Wishart DS. J. Labelled Comp. Radiopharm.  2000,  43:  1193 
  • 8d See also: Zhu Z. Wang Y. Zhang Y. Liu G. Liu N. Rusckowski M. Hnatowich D. J. Nucl. Med. Biol.  2001,  28:  703 ; and references therein
  • 8e Goodbody A, and Pollak A. inventors; WO Patent Appl.  9522996. Other cysteine-containing tripeptides and derivatives: ; Chem. Abstr. 1995, 123, 250205
  • 8f See also: Pollak A. Goodbody AE. Ballinger JR. Duncan GS. Tran LL. Dunn-Dufault R. Meghji K. Lau F. Andrey TW. Nucl. Med. Commun.  1996,  17:  132 
  • 8g See also: Lister-James J. Knight LC. Mauer AH. Bush LR. Moyer BR. Dean RT. J. Nucl. Med.  1996,  37:  775 
  • 8h See also: Pearson DA. Lister-James J. McBride WJ. Wilson DM. Martel LJ. Civitello ER. Taylor JE. Moyer BR. Dean RT. J. Med. Chem.  1996,  39:  1361 
  • 8i See also: Wishart DS. Tools for Protein Technologies, Biotechnology   2nd ed., Vol. 5b:  John Wiley & Sons; New York: 2001.  p.325 
  • 8j Gly-Ala-Gly-Gly peptide: Ben-Haim S. Kahn D. Weiner GJ. Madsen MT. Waxman AD. Williams CM. Clarke-Pearson DL. Colemann RE. Maguire RT. Nucl. Med. Biol.  1994,  21:  131 
  • 8k Luyt LG. Hunter DH. Book of Abstracts, 217th National Meeting of the American Chemical Society, Anaheim, CA, March 21-25: 1999   American Chemical Society; Washington DC: 1999.  p.NUCL-184 
  • 9 Schwartz DA. Abrams MJ. Hauser MM. Gaul FE. Larsen SK. Rauh D. Zubieta JA. Bioconjugate Chem.  1991,  2:  333 
  • 10 Babich JW. Solomon H. Pike MC. Kroon D. Graham W. Abrams MJ. Tompkins RG. Rubin RH. Fischman AJ. J. Nucl. Med.  1993,  34:  1964 
  • 11 Rusckowski M. Qu T. Gupta S. Ley A. Hnatowich DJ. J. Nucl. Med.  2001,  42:  1870 
  • 12 Babich JW. Fischman AJ. Nucl. Med. Biol.  1995,  22:  25 
  • 13 Alberto R. Ortner K. Wheatley N. Schibli R. Schubiger AP. J. Am. Chem. Soc.  2001,  123:  3135 
  • 14 Banerjee SR. Levadala MK. Lazarova N. Wei L. Valliant JF. Stephenson KA. Babich JW. Maresca KP. Zubieta J. Inorg. Chem.  2002,  41:  6417 
  • 15 Banerjee SR. Wei L. Levadala MK. Lazarova N. Golub VOJ. O’Connor CJ. Stephenson KA. Valliant JF. Babich JW. Zubieta J. Inorg. Chem.  2002,  41:  5795 
  • 16a Stephenson KA. Valliant JF. Zubieta J. Banerjee SR. Levadala MK. Taggart L. Ryan L. McFarlane N. Boreham DR. Babich JW. Maresca KP. J. Nucl. Med.  2003,  44:  48P 
  • 16b Stephenson KA. Zubieta J. Banerjee SR. Levadala MK. Taggart L. Ryan L. McFarlane N. Boreham DR. Maresca KP. Babich JW. Valliant JF. Bioconjugate Chem.  2004,  15:  128 
  • 17a Laschat S. Fröhlich R. Wibbeling B. J. Org. Chem.  1996,  61:  2829 
  • 17b Nefzi A. Ostresh JM. Houghten RA. Tetrahedron Lett.  1997,  38:  4943 
  • 17c Boger DL. Zhou J. Borzilleri RM. Nukui S. Castle SL. J. Org. Chem.  1997,  62:  2054 
  • 17d Cao B. Xiao D. Joullé MM. Org. Lett.  1999,  1:  1799 
  • 17e Weigl M. Wunsch B. Org. Lett.  2000,  2:  1177 
  • 18a Ohfune Y. Kurokawa N. Higuchi N. Saito M. Hashimoto M. Tanaka T. Chem. Lett.  1984,  3:  441 
  • 18b Baggaley KH. Fears R. Ferres H. Geen GR. Hatton IK. Jennings LJA. Tyrrell AWR. Eur. J. Med. Chem.  1988,  23:  523 
  • 18c Salvi J.-P. Walchshofer N. Paris J. Tetrahedron Lett.  1994,  35:  1181 
  • 18d Bitan G. Muller D. Kasher R. Gluhov EV. Gilon C. J. Chem. Soc., Perkin Trans. 1  1997,  1501 
  • 19a Andruszkiewicz R. Pol. J. Chem.  1988,  62:  257 ; Chem. Abstr. 1990, 112, 56607
  • 19b Wang Z.-M. Lin H.-K. Zhou Z.-F. Zhu S.-R. Liu T.-F. Chen Y.-T. J. Chem. Res., Synop.  2000,  170 
  • 19c Verardo G. Geatti P. Pol E. Giumanini AG. Can. J. Chem.  2002,  80:  779 
  • 20a Song Y. Sercel AD. Johnson DR. Colbry NL. Sun K.-L. Roth BD. Tetrehedron Lett.  2000,  41:  8225 
  • 20b Quitt P. Hellerbach J. Vogler K. Helv. Chim. Acta  1963,  46:  327 
  • 21 Zhou DL. Guan YD. Jin S. Chin. Chem. Lett.  1990,  1:  209 
  • 22a Abdel-Magid AF. Maryanoff CA. Synlett  1990,  537 
  • 22b Abdel-Magid AF. Maryanoff CA. Carson KG. Tetrahedron Lett.  1990,  31:  5595 
  • 22c Abdel-Magid AF. Carson KG. Harris BD. Maryanoff CA. Shah RD. J. Org. Chem.  1996,  61:  3849 
  • 23a Ramanjulu JM. Joullé MM. Synth. Commun.  1996,  26:  1379 
  • 23b Kulkarni BA. Ganesan A. Angew. Chem., Int. Ed. Engl.  1997,  36:  2454 
  • 23c Abdel-Magid AF. Harris BD. Maryonoff CA. Synlett  1994,  81 
  • 23d Kubota H. Kubo A. Takahashi M. Shimizu R. Da-te T. Okamura K. Nunami K.-I. J. Org. Chem.  1995,  60:  6776 
  • 23e Abdel-Magid AF. Maryanoff CA. ACS Symposium Series 641, Reductions in Organic Synthesis   American Chemical Society; Washington DC: 1996.  p.201 
  • 26 Alberto R. Egli A. Abram U. Hegetschweiler K. Gramlich V. Schubiger PA. J. Chem. Soc., Dalton Trans.  1994,  2815 
  • 27 Alberto R. Schibli R. Schubiger AP. J. Am. Chem. Soc.  1999,  121:  6076 
24

Table [1] , Entry 6 (C22 H25 N3 O3, formula weight 379.45): Orthorhombic, space group P212121 with a = 7.3392(4) Å, b = 15.0539(7) Å, c = 17.9286(9) Å, V = 1980.82(17) Å3, Z = 4, R1 = 0.0556, wR2 = 0.1079 (F2, all data). Full details on the crystal structure of 6 are available from the authors.

25

The imine to aldehyde ratio was in the range of 1: 0.10-0.20, as determined by 1H NMR spectrum.

28

Maresca, K. P.; Levadala, M. K.; Banerjee, S. R.; Babich, J. W.; Zubieta, J., unpublished results.