Synlett 2004(9): 1646-1648  
DOI: 10.1055/s-2004-825592
LETTER
© Georg Thieme Verlag Stuttgart · New York

Preparation, Thermal Stability and Carbonyl Addition Reactions of 2,5-Difluorophenyl Lithium and 2,5-Difluorophenyl Grignard

Jeremy P. Scott*, Sarah E. Brewer*, Antony J. Davies, Karel M. J. Brands
Department of Process Research, Merck Sharp & Dohme Research Laboratories, Hertford Road, Hoddesdon, Hertfordshire, EN11 9BU, UK
Fax: +44(1992)452581; e-Mail: jeremy_scott@merck.com;
Further Information

Publication History

Received 24 February 2004
Publication Date:
18 May 2004 (online)

Abstract

The generation of 2,5-difluorophenyl lithium 2 by lithiation of 1,4-difluorobenzene with BuLi in THF, with and without amine additives, has been surveyed. Thermal stability data of the organolithium species 2 generated with and without TMEDA were determined and the synthetic utility of 2 in the addition to aldehyde and ketone electrophiles is described. Preparation and stability of the corresponding organomagnesium reagent 1, generated by ­bromine-magnesium exchange of 1-bromo-2,5-difluorobenzene with isopropylmagnesium chloride, was also examined.

    References

  • 1a Abarbri M. Dehmel F. Knochel P. Tetrahedron Lett.  1999,  40:  7449 
  • 1b For a recent review, see: Knochel P. Dohle W. Gommermann N. Kneisel FF. Kopp F. Korn T. Sapountzis I. Vu VA. Angew. Chem. Int. Ed.  2003,  42:  4302 
  • 2 Leazer JL. Cvetovich R. Tsay F.-R. Dolling U. Vickery T. Bachert D. J. Org. Chem.  2003,  68:  3695 
  • Halogen-magnesium exchange reactions employing organomagnesium ate complexes have been reported:
  • 3a Inoue A. Kitagawa K. Shinokubo H. Oshima K. J. Org. Chem.  2001,  66:  4333 
  • 3b Mase T. Houpis IN. Akao A. Dorziotis I. Emerson K. Hoang T. Iida T. Itoh T. Kamei K. Kato S. Kato Y. Kawasaki M. Lang F. Lee J. Lynch J. Maligres P. Molina A. Nemoto T. Okada S. Reamer R. Song JZ. Tschaen D. Wada T. Zewge D. Volante RP. Reider PJ. Tomimoto K. J. Org. Chem.  2001,  66:  6775 
  • 5a ortho-Halophenyl lithiums are well known benzyne precursors at elevated temperatures, see inter alia: Kessar SV. In Comprehensive Organic Synthesis   Trost BM. Fleming I. Paquette LA. Pergamon Press; Oxford: 1991.  Vol. 4:  Chap. 2.3. p.483-515  
  • 5b

    Attempts to characterise the degradation products by LCMS were unsuccessful.

  • 7a Ong HH. Profitt JA. Anderson VB. Kruse H. Wilker JC. Geyer HM. J. Med. Chem.  1981,  24:  74 
  • 7b Bridges AJ. Patt WC. Stickney TM. J. Org. Chem.  1990,  55:  773 
  • 7c

    We have found MTBE to be an excellent alternative to THF for this bromine-lithium exchange.

  • 8a Nichols DA. J. Chem. Soc. (A)  1969,  10:  1471 
  • 8b Morrow GW. Swenton JS. Filppi JA. Wolgemuth RL. J. Org. Chem.  1987,  52:  713 
  • 8c Schlosser M. Katsoulos G. Takagishi S. Synlett  1990,  747 
  • 9 An ab initio study encompassing 2,5-difluorophenyl lithium (2) has been reported, see: Streitweiser A. Abu-Hasanyan F. Neuhaus A. Brown F. J. Org. Chem.  1996,  61:  3151 
  • 10a Chalk AJ. Hoogeboom TJ. J. Organomet. Chem.  1968,  11:  615 
  • 10b For a discussion of the role of TMEDA as additive, see: Collum DA. Acc. Chem. Res.  1992,  25:  448 
4

An aliquot was quenched into 10 equiv of PhCHO in THF at ambient and assayed versus authentic adduct 4 (R1 = H, R2 = Ph) by reverse phase HPLC with UV detection at 210 nm on a Zorbax SB Phenyl 250 × 4.6 mm column.

6

For example, Aldrich 2003 catalogue prices: 1-Bromo-2,5-difluorobenzene (24795-2) £648/mol, £3.36/g; 1,4-difluorobenzene (D10220-2) £88/mol, £0.77/g.

11

All new compounds gave satisfactory spectroscopic and/or elemental data:
1-(2,5-Difluorophenyl)-2,2-dimethylpropan-1-ol (colourless oil): 1H NMR (400 MHz, CD2Cl2): d = 7.25-7.20 (1 H, m), 7.06-6.93 (2 H, m), 4.80 (1 H, d, J = 4.0 Hz), 2.04 (1 H, d, J = 4.0 Hz), 0.96 (9 H, s). 13C NMR (100 MHz, CD2Cl2): δ = 158.3 (d, J = 259 Hz), 156.0 (d, J = 257 Hz), 131.3 (dd, J = 7, 16 Hz), 115.8 (dd, J = 9, 27 Hz), 115.5 (dd, J = 5, 22 Hz), 114.9 (dd, J = 9, 24 Hz), 74.3, 36.2, 25.4. Anal. Calcd for C11H14F2O: C, 65.98; H, 7.05; F, 18.98. Found: C, 65.99; H, 7.13; F, 18.61. (2,5-Difluorophenyl)(pyridin-3-yl)methanol: Mp 102-104 °C. 1H NMR (400 MHz, CD2Cl2): d = 8.34-8.31 (1 H, m), 8.32-8.20 (1 H, m), 7.65-7.61 (1 H, m), 7.27-7.22 (1 H, m), 7.18-7.13 (1 H, m), 6.92-6.83 (2 H, m), 5.30 (1 H, br s). 13C NMR (100 MHz, CD2Cl2): d = 159.0 (dd, J = 2, 241 Hz), 155.4 (dd, J = 2, 240 Hz), 148.3, 147.6, 138.8, 134.6, 132.6 (dd, J = 7, 16 Hz), 123.7, 116.4 (dd, J = 8, 24 Hz), 115.4 (dd, J = 8, 24 Hz), 113.9 (dd, J = 5, 25 Hz), 67.0 (d, J = 3 Hz). Anal. Calcd for C12H9F2NO: C, 65.16; H, 4.10; N, 6.33; F, 17.18. Found: C, 65.04; H, 4.09; N, 6.43; F, 17.15.
8-(2,5-Difluorophenyl)-1,4-dioxaspiro[4.5]decan-8-ol: Mp 112-114 °C. 1H NMR (400 MHz, CDCl3): d = 7.27-7.21 (1 H, m), 7.00-6.85 (2 H, m), 3.95 (4 H, s), 2.42 (1 H, br s), 2.36-2.28 (2 H, m), 2.15-2.03 (2 H, m), 1.88-1.70 (4 H, m). 13C NMR (100 MHz, CDCl3): d = 158.6 (d, J = 259 Hz), 156.2 (d, J = 258 Hz), 136.8 (dd, J = 6, 13 Hz), 117.3 (dd, J = 8, 27 Hz), 114.6 (dd, J = 9, 24 Hz), 113.7 (dd, J = 5, 26 Hz), 108.2, 71.6, 64.3, 34.2, 30.3. Anal. Calcd for C14H16F2O3: C, 62.22; H, 5.97; F, 14.06. Found: C, 62.33; H, 5.98; F, 14.02.
1-Benzyl-4-(2,5-difluorophenyl) piperidin-4-ol: Mp 63-65 °C. 1H NMR (400 MHz, CD2Cl2): d = 7.42-7.26 (6 H, m), 7.12-6.93 (2 H, m), 3.60 (2 H, s), 2.83-2.76 (2 H, m), 2.54-2.46 (2 H, m), 2.42-2.32 (2 H, m), 2.20 (1 H, br s), 1.78-1.72 (2 H, m). 13C NMR (100 MHz, CD2Cl2): d = 158.7 (d, J = 253 Hz), 156.3 (d, J = 254 Hz), 138.9, 137.0 (dd, J = 7, 13 Hz), 129.0, 128.1, 126.9, 117.3 (dd, J = 9, 27 Hz), 114.7 (dd, J = 9, 24 Hz), 113.8 (dd, J = 5, 26 Hz), 70.6, 63.0, 49.0, 36.3. Anal. Calcd for C18H19F2NO: C, 71.27; H, 6.31; N, 4.62. Found: C, 71.29; H, 6.31; N, 4.63.

12

Addition reactions of organolithium 2 to the carbonyl substrates illustrated, other than 1,4-cyclohexanedione mono-ethylene ketal, have not been evaluated in the absence of TMEDA.