References
For oxidative radical cyclizations from anions, see:
<A NAME="RG02604ST-1A">1a</A>
Dalko PI.
Tetrahedron
1995,
51:
7579
<A NAME="RG02604ST-1B">1b</A>
Iqbal J.
Bhatia B.
Nayyar NK.
Chem. Rev.
1994,
94:
519
<A NAME="RG02604ST-2A">2a</A>
Jahn U.
Chem. Commun.
2001,
1600
<A NAME="RG02604ST-2B">2b</A>
Jahn U.
Müller M.
Aussieker S.
J. Am. Chem. Soc.
2000,
122:
5212
<A NAME="RG02604ST-3">3</A> See for instance:
Elliott MC.
J. Chem. Soc., Perkin Trans. 1
2002,
2301 ; and earlier reviews in this series
Reviews:
<A NAME="RG02604ST-4A">4a</A>
Balme G.
Bouyssi D.
Lomberget T.
Monteiro N.
Synthesis
2003,
2115
<A NAME="RG02604ST-4B">4b</A>
Balme G.
Bossharth E.
Monteiro N.
Eur. J. Org. Chem.
2003,
4101
<A NAME="RG02604ST-5A">5a</A>
Durand AC.
Rodriguez J.
Dulcere JP.
Synlett
2000,
731
<A NAME="RG02604ST-5B">5b</A>
Durand A.-C.
Dumez E.
Rodriguez J.
Dulcere J.-P.
Chem. Commun.
1999,
2437
<A NAME="RG02604ST-6">6</A>
On prolonged heating of the nitronates 3
-, only some decomposition was observed.
For a few radical cyclizations of α-nitro radicals to carbocycles, see:
<A NAME="RG02604ST-7A">7a</A>
Arai N.
Narasaka K.
Bull. Chem. Soc. Jpn.
1997,
70:
2525 ; and cited references
<A NAME="RG02604ST-7B">7b</A>
Bowman WR.
Brown DS.
Burns CA.
Crosby D.
J. Chem. Soc., Perkin Trans. 1
1994,
2083
<A NAME="RG02604ST-7C">7c</A>
Bowman WR.
Brown DS.
Burns CA.
Crosby D.
J. Chem. Soc., Perkin Trans. 1
1993,
2099
<A NAME="RG02604ST-7D">7d</A>
Kende AS.
Koch K.
Tetrahedron Lett.
1986,
27:
6051
<A NAME="RG02604ST-8">8</A> For the addition of inorganic oxygen-centered radicals to alkynes, see:
Wille U.
Jargstorff C.
J. Chem. Soc., Perkin Trans. 1
2002,
1036
<A NAME="RG02604ST-9">9</A> Review on conjugate additions to nitroalkenes:
Berner OM.
Tedeschi L.
Enders D.
Eur. J. Org. Chem.
2002,
1877
<A NAME="RG02604ST-10A">10a</A>
Jiao X.-D.
Espenson JH.
Inorg. Chem.
2000,
39:
1549
<A NAME="RG02604ST-10B">10b</A>
Schmidt SP.
Basolo F.
Trogler WC.
Inorg. Chim. Acta
1987,
131:
181
<A NAME="RG02604ST-10C">10c</A>
Freier RK.
Aqueous Solutions Data for Inorganic and Organic Compounds
Vol. 1:
de Gruyter;
Berlin, New York:
1976.
<A NAME="RG02604ST-10D">10d</A>
The presented values can only serve as a rough guideline, since our experimental conditions
are completely different from those of the electrochemical measurements.
<A NAME="RG02604ST-11">11</A>
Commercial anhydrous CuCl2 was heated to 130 °C for 48 h under high vacuum to remove traces of H2O.
<A NAME="RG02604ST-12">12</A>
General Procedure: At -78 °C under N2, 1.5 mmol of n-BuLi (1,6 M solution in hexane) was added via syringe to a stirred solution of allylic
alcohols 2a-e (1.5 mmol) in dry DME (10 mL). After 15 min, a solution of nitroalkene 1a or b (1 mmol) in dry DME (1 mL) was added. The reaction mixture was warmed slowly from
-50 to -40 °C and maintained at this temperature until completed by TLC. After changing
to an ice bath, 471 mg (3.5 mmol) of anhyd CuCl2 was added in one portion with vigorous stirring. After 30 min, the reaction was quenched
with a sat. solution of NH4Cl (1 mL). The inhomogeneous green-brown solution was diluted with Et2O (20 mL) and filtered through a silica gel pad. The solution was concentrated to
5 mL, silica gel (2 g) was added and the remaining solvent was removed under vacuum.
The thus pre-adsorbed crude product was purified by silica gel flash column chromatography
with hexane/EtOAc (gradient: 40:1 to 1:1).
<A NAME="RG02604ST-13">13</A>
Selected spectral data: Compound 5aa: IR (film): 3070, 3049, 3033, 3016, 2978, 2970, 2958, 1549, 1381, 1098, 1072, 742,
701 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.37-7.27 (m, 5 H, Ph), 5.49 (d, J = 3.1 Hz, 1 H, CHPh), 5.01 (dd, J = 7.4, 3.1 Hz, 1 H, CHNO2), 4.44 (t, J = 8.4 Hz, 1 H, OCH2), 4.05 (dd, J = 10.3, 8.7 Hz, 1 H, OCH2), 3.60 (dd, J = 11.3, 7.4 Hz, 1 H, CH2Cl), 3.50 (dd, J = 11.3, 8.1 Hz, 1 H, CH2Cl), 3.04 (d quint, J = 10.3, 7.5 Hz, 1 H, CHCH2Cl). 13C NMR (100 MHz, CDCl3): δ = 138.4 (s, Ph), 128.8 (d, Ph), 128.7 (d, p-Ph), 125.2 (d, Ph), 93.2 (d, CHNO2), 84.9 (d, CHPh), 71.2 (t, CH2O), 45.6 (d, CHCH2Cl), 39.3 (t, CH2Cl). MS (CI): m/z (%) = 278/276 (7/22), 261/259 (45/100) [M + NH4]+, 225 (38), 208 (25), 195 (7), 145 (18). Compound 6aa: mp 68 °C. 1H NMR (400 MHz, CDCl3): δ = 7.30-7.25 (m, 5 H, Ph), 5.19 (dd, J = 6.2, 2.9 Hz, 1 H, CHNO2), 5.12 (d, J = 6.3 Hz, 1 H, CHPh), 4.53 (dd, J = 8.9, 8.1 Hz, 1 H, OCH2), 3.72 (dd, J = 9.0, 7.2 Hz, 1 H, OCH2), 3.63 (dd, J = 8.1, 6.0 Hz, 1 H, CH2Cl), 3.52 (m, 2 H, CH2Cl, CHCH2Cl). 13C NMR (100 MHz, CDCl3): δ = 133.8 (s, Ph), 128.8 (d, Ph), 128.3 (d, Ph), 125.9 (d, Ph), 92.8 (d, CHNO2), 83.7 (d, CHPh), 70.1 (t, CH2O), 46.3 (d, CHCH2Cl), 43.0 (t, CH2Cl). MS (CI): m/z (%) = 278/276 (5/15) [M + NH3 + NH4]+, 261/259 (30/100) [M + NH4]+, 225 (30), 195 (22). Anal. Calcd for C11H12ClNO3 (241.7): C, 54.67; H, 5.00; N, 5.80. Found: C, 54.84; H, 4.91; N, 5.65. Compound
5ab: mp 110 °C. IR (KBr): 3089, 3064, 3031, 3019, 2995, 2979, 2905, 1548, 1378, 1137,
1103, 1073, 724, 699 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.39-7.27 (m, 5 H, Ph), 5.58 (br s, 1 H, CHPh), 4.97 (dd, J = 6.1, 1.2 Hz, 1 H, CHNO2), 4.49 (t, J = 8.2 Hz, 1 H, CH2O), 4.45 (dd, J = 11.2, 8.3 Hz, 1 H, CH2O), 2.85 (ddd, J = 11.3, 7.8, 6.2 Hz, 1 H, CHCCl), 1.62 (s, 3 H, CH3), 1.60 (s, 3 H, CH3). 13C NMR (100 MHz, CDCl3): δ = 139.4 (s, Ph), 128.9 (d, Ph), 128.5 (d, p-Ph), 125.1 (d, Ph), 92.2 (d, CHNO2), 85.1 (d, CHPh), 69.1 (t, CH2O), 65.7 (s, CCl), 55.3 (d, CHCCl), 32.2 (q, CH3), 30.3 (q, CH3). MS (CI): m/z (%) = 306/304 (3/10) [M + NH3 + NH4]+, 289/287 (24/100) [M + NH4]+, 271 (10), 254 (20), 237 (23), 220 (23), 202 (19), 145 (7). Anal. Calcd for C13H16ClNO3 (269.7): C, 57.89; H, 5.98; N, 5.19. Found: C, 58.19; H, 6.12; N, 4.93. Compound
5bb: IR (film): 2972, 2935, 2897, 1552, 1375, 1131, 1101, 1057, 779 cm-1. 1H NMR (400 MHz, CDCl3): δ = 4.81 (dd, J = 6.4, 1.6 Hz, 1 H, CHNO2), 4.39 (dt, J = 7.0, 1.4 Hz, 1 H, CHEt), 4.24 (dd, J = 11.2, 8.4 Hz, 1 H, CH2O), 4.20 (dd, J = 8.2, 7.4 Hz, 1 H, CH2O), 2.80 (dt, J = 11.3, 7.1 Hz, 1 H, CHCCl), 1.64 (s, 3 H, CH3), 1.61 (s, 3 H, CH3), 1.59 (m, 1 H, CH2CH3), 1.49 (sext, J = 7.2 Hz, 1 H, CH
2CH3), 0.95 (t, J = 7.4 Hz, 3 H, CH
3CH2). 13C NMR (100 MHz, CDCl3): δ = 89.6 (d, CHNO2), 85.7 (d, CHEt), 68.2 (t, CH2O), 65.8 (s, CCl), 56.8 (d, CHCCl), 31.8 (q, CH3CCl), 30.6 (q, CH3CCl), 28.4 (t, CH3
CH2), 9.7 (q, CH3CH2). MS (CI): m/z (%) = 239 (1) [M + NH4]+, 203 (18), 189 (10), 172 (10), 156 (16), 139 (100). Anal. Calcd for C9H16ClNO3 (221.7): C, 48.76; H, 7.27; N, 6.32. Found: C, 48.81; H, 7.27; N, 6.09.
<A NAME="RG02604ST-14">14</A>
Configuration determined by NOE difference spectroscopy.
<A NAME="RG02604ST-15">15</A>
The relative configuration was proved by X-ray crystallography.
<A NAME="RG02604ST-16A">16a</A>
Beckwith ALJ.
Schiesser CH.
Tetrahedron
1985,
41:
3925
<A NAME="RG02604ST-16B">16b</A>
Spellmeyer DC.
Houk KN.
J. Org. Chem.
1987,
52:
959
<A NAME="RG02604ST-17">17</A>
Curran DP.
Porter NA.
Giese B.
Stereochemistry of Radical Reactions
VCH;
Weinheim:
1996.
<A NAME="RG02604ST-18A">18a</A>
Kochi JK. In
Free Radicals
Vol. 1:
Kochi JK.
Wiley;
New York:
1973.
p.591-683
<A NAME="RG02604ST-18B">18b</A>
Barton DHR.
Jacob M.
Peralez E.
Tetrahedron Lett.
1999,
40:
9201
<A NAME="RG02604ST-19">19</A> In analogy to:
Burke SD.
Voight EA.
Org. Lett.
2001,
3:
237
<A NAME="RG02604ST-20A">20a</A> In analogy to:
Rozners E.
Katkevica D.
Bizdena E.
Strömberg R.
J. Am. Chem. Soc.
2003,
125:
12125
<A NAME="RG02604ST-20B">20b</A>
The crude amine was protected as usual with Boc2O/Et3N.