References
<A NAME="RG31703ST-1A">1a</A>
O’Donnell MI. In
Catalytic Asymmetric Synthesis, Asymmetric Phase-Transfer Reactions
2nd ed.:
Ojima I.
Wiley;
New York:
2000.
p.727
<A NAME="RG31703ST-1B">1b</A>
Comprehensive Asymmetric Catalysis
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
New York:
1999.
p.241
<A NAME="RG31703ST-2A">2a</A>
Stoddart JF.
Top. Stereochem.
1987,
17:
207
<A NAME="RG31703ST-2B">2b</A>
Miethchen R.
Fehring V.
Synthesis
1998,
94 ; and references cited therein
<A NAME="RG31703ST-3">3</A>
Bakó P.
Czinege E.
Bakó T.
Czugler M.
Tőke L.
Tetrahedron: Asymmetry
1999,
10:
4539 ; and references cited therein
<A NAME="RG31703ST-4A">4a</A>
Novák T.
Tatai J.
Bakó P.
Czugler M.
Keglevich Gy.
Tő
ke L.
Synlett
2001,
424
<A NAME="RG31703ST-4B">4b</A>
Bakó T.
Bakó P.
Szöllősy Á.
Czugler M.
Keglevich Gy.
Tőke L.
Tetrahedron: Asymmetry
2002,
13:
203
For recent review, see:
<A NAME="RG31703ST-5A">5a</A>
Porter MJ.
Roberts SM.
Skidmore J.
Bioorg. Med. Chem.
1999,
7:
2145
<A NAME="RG31703ST-5B">5b</A>
Banfi S.
Colonna S.
Molinari H.
Juliá S.
Guixer J.
Tetrahedron
1984,
40:
5207
<A NAME="RG31703ST-5C">5c</A>
Lygo B.
Wainwright PG.
Tetrahedron
1999,
55:
6289
<A NAME="RG31703ST-5D">5d</A>
Corey EJ.
Zhang F.-Y.
Org. Lett.
1999,
1:
1287
<A NAME="RG31703ST-5E">5e</A>
Arai S.
Tsuge H.
Shioiri T.
Tetrahedron Lett.
1998,
39:
7563
<A NAME="RG31703ST-5F">5f</A>
Enders D.
Zhu J.
Raabe G.
Angew. Chem., Int. Ed. Engl.
1996,
35:
1725
<A NAME="RG31703ST-5G">5g</A>
Enders D.
Kramps L.
Zhu J.
Tetrahedron: Asymmetry
1998,
9:
3959
<A NAME="RG31703ST-5H">5h</A>
Yamada K.
Arai T.
Sasai H.
Shibasaki M.
J. Org. Chem.
1998,
63:
3666
<A NAME="RG31703ST-5I">5i</A>
Watanabe S.
Arai T.
Sasai H.
Bougauchi M.
Shibasaki M.
J. Org. Chem.
1998,
63:
8090
<A NAME="RG31703ST-6">6</A>
Bakó P.
Tőke L.
J. Incl. Phenom.
1995,
23:
195
<A NAME="RG31703ST-7">7</A>
Di Cesare P.
Gross B.
Synth. Commun.
1979,
4581
<A NAME="RG31703ST-8">8</A>
Marsman B.
Wynberg H.
J. Org. Chem.
1979,
44:
2312
<A NAME="RG31703ST-9">9</A>
Washington I.
Houk KN.
Org. Lett.
2002,
4:
2661
<A NAME="RG31703ST-10">10</A>
Juliá S.
Guixer J.
Masana J.
Rocas J.
Colonna S.
Annuziata R.
J. Chem. Soc., Perkin Trans. 1
1982,
1317
<A NAME="RG31703ST-11">11</A>
Selected data for 5: [α]D
20 +18.0 (c = 1, CHCl3). 1H NMR:
δ = 7.47 (d, 2 H, ArH), 7.36 (t, 3 H, ArH), 5.59 (s, 1 H, benzylidene-CH), 4.78 (s,
1 H, anomer-H), 4.24 (q, J = 10.1 Hz, 1 H, H-6), 4.06 (t, J = 9.6 Hz, 1 H, H-6), 3.66-4.00 (m, 16 H, OCH2, H-2, H-3, H-4, H-5), 3.38 (s, 3 H, OCH3), 3.26 (t, 2 H, CH2I), 3.18 (t, 2 H, CH2I). For 2a: [α]D
20 +16.0 (c = 1, CHCl3). 1H NMR: δ = 7.48 (d, 2 H, ArH), 7.35 (t, 3 H, ArH), 5.30 (s, 1 H, benzylidene-CH),
4.75 (s, 1 H, anomer-H), 4.24 (q, J = 10.1 Hz, 1 H, H-6), 4.11 (t, J = 9.6 Hz, 1 H, H-6), 3.55-3.98 (m, 18 H, OCH2, H-2, H-3, H-4, H-5), 3.37 (s, 3 H, OCH3), 2.78 (t, 6 H, CH2N). FAB-MS: 484 [M+ + H], 506 [M+ + Na]. For 2b: [α]D
20 +15.0 (c = 1, CHCl3). FAB-MS: 498 [M+ + H], 520 [M+ + Na]. For 2c: [α]D
20 +19.6 (c = 1, CHCl3). 1H NMR: δ = 7.39 (d, 2 H, ArH), 7.27 (t, 3 H, ArH), 5.52 (s, 1 H, benzylidene-CH),
4.67 (s, 1 H, anomer-H), 4.16 (q, J = 10.1 Hz, 1 H, H-6), 4.02 (t, J = 9.6 Hz, 1 H, H-6), 3.45-3.95 (m, 18 H, OCH2, H-2, H-3, H-4, H-5), 3.31 (s, 3 H, OCH3), 3.24 (t, 3 H, OCH3), 2.72 (t, 4 H, CH2N), 2.56 (t, 2 H, CH2N), 1.69 (m, 2 H, CH2). FAB-MS: 512 [M+ + H], 534 [M+ + Na]. For 2d: [α]D
20 +18.8 (c = 1, CHCl3). 1H NMR: δ = 7.71 (d, 2 H, tosyl-ArH), 7.49 (d, 2 H, tosyl-ArH), 7.38 (d, 2 H, ArH),
7.32 (t, 3 H, ArH), 5.62 (s, 1 H, benzylidene-CH), 4.74 (s, 1 H, anomer-H), 4.26 (q,
J = 10.1 Hz, 1 H, H-6), 4.12 (t, J = 9.6 Hz, 1 H, H-6), 3.51-4.00 (m, 16 H, OCH2, H-2, H-3, H-4, H-5), 3.40 (s, 3 H, OCH3), 3.20-3.26 (m, 4 H, CH2N), 2.44 (s, 3 H, CH3). FAB-MS: 594 [M+ + H], 616 [M+ + Na]. For 2e: [α]D
20 +26.3 (c = 1, CHCl3). 1H NMR: δ = 7.47 (d, 2 H, ArH), 7.35 (t, 3 H, ArH), 5.60 (s, 1 H, benzylidene-CH),
4.78 (s, 1 H, anomer-H), 4.25 (q, J = 10.1 Hz, 1 H, H-6), 4.14 (t, J = 9.6 Hz, 1 H, H-6), 3.55-4.08 (m, 16 H, OCH2, H-2, H-3, H-4, H-5), 3.39 (s, 3 H, OCH3), 2.85 (t, 2 H, CH2N), 2.76 (t, 2 H, CH2N), 2.55 (m, 1 H, NH). FAB-MS: 440 [M+ + H], 462 [M+ + Na].
<A NAME="RG31703ST-12">12</A>
General Procedure for the Epoxidation of Chalcones: Chalcone (1.44 mmol) and the crown
ether (0.1 mmol) were dissolved in 3 mL of toluene and 1 mL of 20% aq NaOH was added
maintaining the temperature at 5 °C with ice water. Then 0.5 mL of tert-butylhydroperoxide (5.5 M decane solution, 2.88 mmol) was added and the mixture stirred
at 5 °C. After completing the reaction (1-48 h), a mixture of 7 mL of toluene and
10 mL of water was added. The organic phase was dried (Na2SO4) and concentrated in vacuo. The crude product was purified on silica gel by preparative
TLC with hexane-EtOAc (10:1) as eluent, for 7a [α]D = -196 (c = 1, CH2Cl2, 20 °C) with 92% ee (lit., [α]D -214 for the pure enantiomer);
[10]
mp 64-66 °C (EtOH). 1H NMR (CDCl3): δ = 8.02 (d, 2 H, o-COPh-H), 7.63 (t, 1 H, p-COPh-H), 7.50 (t, 2 H, m-COPh-H), 7.38-7.44 (m, 5 H, CHPh-H), 4.30 (d, J = 1.9 Hz, 1 H, COCH), 4.09 (d, J = 1.9 Hz, 1 H, PhCH). For 7c: [α]D = -167.9 (c = 1, CH2Cl2, 20 °C) with 82% ee; mp 81 °C (EtOH). 1H NMR: δ = 8.01 (d, 2 H, o-COPh-H), 7.39 (m, 5 H, CHPh-H), 6.95 (d, 2 H, m-COPh-H), 4.25 (d, J = 1.7 Hz, 1 H, COCH), 4.07 (d, J = 1.3 Hz, 1 H, PhCH), 3.87 (s, 3 H, OCH3). For 7d: [α]D = -156.1 (c = 1, CH2Cl2, 20 °C) with 80% ee; mp 121 °C (EtOH). 1H NMR: δ = 7.96 (d, 2 H, o-COPh-H), 7.46 (d, 2 H, m-COPh-H), 7.40 (t, 3 H, m,p-CHPh-H), 7.36 (d, 2 H, o-CHPh-H), 4.23 (d, J = 1.6 Hz, 1 H, COCH), 4.07 (d, J = 1.3 Hz, 1 H, PhCH).