Synlett 2004(2): 0225-0230  
DOI: 10.1055/s-2003-44988
LETTER
© Georg Thieme Verlag Stuttgart · New York

Sc(OTf)3 as Efficient Catalyst for Aryl C-Glycoside Synthesis

Akimi Ben, Takahito Yamauchi, Takashi Matsumoto, Keisuke Suzuki*
Department of Chemistry, Tokyo Institute of Technology and CREST-JST Agency, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
Fax: +81(3)57342788; e-Mail: ksuzuki@chem.titech.ac.jp;
Further Information

Publication History

Received 10 November 2003
Publication Date:
08 December 2003 (online)

Abstracts

Sc(OTf)3 was found to be an efficient catalyst for the C-glycosylation of phenols. Reactions of various functionalized phenols and glycosyl acetates, including an azido-bearing one, are achieved by using a catalytic amount of Sc(OTf)3 (10 mol% for neutral sugars or 50 mol% for an azido sugar) under mild conditions.

    References

  • 1a Hacksell U. Daves GD. Prog. Med. Chem.  1985,  22:  1 
  • 1b Suzuki K. Matsumoto T. In Recent Progress in the Chemical Synthesis of Antibiotics and Related Microbial Products   Vol. 2:  Lukacs G. Springer; Berlin: 1993.  p.353 
  • 1c Levy DE. Tang C. The Chemistry of C-Glycosides   Pergamon; Oxford: 1995. 
  • 1d Postema MHD. C-Glycoside Synthesis   CRC; Florida: 1995. 
  • 2a Matsumoto T. Katsuki M. Suzuki K. Tetrahedron Lett.  1988,  29:  6935 
  • 2b Kometani T. Kondo H. Fujimori Y. Synthesis  1988,  1005 
  • 3a Natural product syntheses by applying the OC-glycoside rearrangement, see: Vineomycinone B2 methyl ester: Matsumoto T. Katsuki M. Jona H. Suzuki K. J. Am. Chem. Soc.  1991,  113:  6892 
  • 3b Gilvocarcin M, V: Matsumoto T. Hosoya T. Suzuki K. J. Am. Chem. Soc.  1992,  114:  3568 
  • 3c See also: Hosoya T. Takashiro E. Matsumoto T. Suzuki K. J. Am. Chem. Soc.  1994,  116:  1004 
  • 3d C104: Matsumoto T. Sohma T. Yamaguchi H. Kurata S. Suzuki K. Synlett  1995,  263 
  • 3e See also: Matsumoto T. Sohma T. Yamaguchi H. Kurata S. Suzuki K. Tetrahedron  1995,  51:  7347 
  • 3f Galtamycinone: Matsumoto T. Yamaguchi H. Suzuki K. Synlett  1996,  433 
  • 3g See also: Matsumoto T. Yamaguchi H. Suzuki K. Tetrahedron  1997,  53:  16533 
  • 3h Ravidomycin: Futagami S. Ohashi Y. Imura K. Hosoya T. Ohmori K. Matsumoto T. Suzuki K. Tetrahedron Lett.  2000,  41:  1063 
  • 3i Aquayamycin: Matsumoto T. Yamaguchi H. Tanabe M. Kuriyama Y. Yasui Y. Suzuki K. Tetrahedron Lett.  2000,  41:  8393 
  • For the use of BF3·OEt2 in OC-glycoside rearrangement, see ref. 2a,b. See also:
  • 4a Brimble MA. Davey RM. McLeod MD. Murphy M. Aust. J. Chem.  2003,  56:  787 
  • 4b Kumazawa T. Onda K. Okuyama H. Matsuba S. Sato S. Onodera J. Carbohydr. Res.  2002,  337:  1007 
  • 4c See also: Andrews FL. Larsen DS. Larsen L. Aust. J. Chem.  2000,  53:  15 
  • 4d For the use of SnCl4, see: Matsumoto T. Hosoya T. Suzuki K. Tetrahedron Lett.  1990,  31:  4629 
  • 4e For the use of TMSOTf, see: Mahling J.-A. Schmidt RR. Synthesis  1993,  325 
  • 4f Toshima K. Matsuo G. Ishizuka T. Ushiki Y. Nakata M. Matsumura S. J. Org. Chem.  1998,  63:  2307 
  • For the combination of Cp2MCl2-AgX (M = Zr, Hf), see:
  • 5a Matsumoto T. Maeta H. Suzuki K. Tsuchihashi G. Tetrahedron Lett.  1988,  29:  3567 
  • 5b Suzuki K. Pure Appl. Chem.  1994,  66:  2175 
  • 6a Matsumoto T. Katsuki M. Jona H. Suzuki K. Tetrahedron Lett.  1989,  30:  6185 
  • 6b Hosoya T. Ohashi Y. Matsumoto T. Suzuki K. Tetrahedron Lett.  1996,  37:  663 
  • 7a Findlay JA. Liu J.-S. Radics L. Rakhit S. Can. J. Chem.  1981,  59:  3018 
  • 7b Findlay JA. Liu J.-S. Radics L. Can. J. Chem.  1983,  61:  323 
  • 7c Sehgal SN. Czerkawski H. Kudelski A. Pandev K. Saucier R. Vezina C. J. Antibiot.  1983,  36:  355 
  • 7d Narita T. Matsumoto M. Mogi K. Kukita K. Kawahara R. Nakashima T. J. Antibiot.  1989,  42:  347 
  • 8a For reviews on Sc(OTf)3 in organic synthesis: Kobayashi S. Eur. J. Org. Chem.  1999,  15 
  • 8b Kobayashi S. In Lewis Acids in Organic Synthesis   Vol. 2:  Yamamoto H. Wiley-VCH; Weinheim: 2000.  p.883 
  • 8c Kobayashi S. Hachiya I. Araki M. Ishitani H. Tetrahedron Lett.  1993,  34:  3755 
  • For the use of Sc(OTf)3 in O-glycosidation, see:
  • 9a Hashizume N. Kobayashi S. Carbohydr. Lett.  1996,  2:  157 
  • 9b Fukase K. Kinoshita I. Kanoh T. Nakai Y. Hasuoka A. Kusumoto S. Tetrahedron  1996,  52:  3897 
  • 9c Yamanoi T. Yamazaki I. Tetrahedron Lett.  2001,  42:  4009 
  • 12 Hamura T. Hosoya T. Yamaguchi H. Kuriyama Y. Tanabe M. Miyamoto M. Yasui Y. Matsumoto T. Suzuki K. Helv. Chim. Acta  2002,  85:  3589 
10

This work was presented at the 83rd Annual Meeting of the Chemical Society of Japan, March 2003, Tokyo, Abstract 2D-1-38.

11

The α-isomer was used for this study. Synthesis of 2 will be reported elsewhere.

13

Selected data of 1H NMR, 13C NMR, NOE and HMBC are shown below (Figure [2] ).

14

Experimantal procedure as follows: To a stirred mixture of Sc(OTf)3 (210 mg, 0.427 mmol; Aldrich, 99.995%), phenol 3 (417 mg, 1.28 mmol), powdered Drierite® (2.6 g) in 1,2-dichloroethane (15 mL), was added acetate 2 (361 mg, 0.878 mmol) in 1,2-dichloroethane (8 mL) at -30 °C. After the temperature was gradually raised to 12 °C during 0.5 h, the mixture was poured into sat. aq NaHCO3 solution. After filtration through a Celite pad, the products were extracted with EtOAc (3×), and the combined organic extracts were washed with brine, and dried over Na2SO4. Removal of the solvents in vacuo and purification by silica-gel column chromatography (hexane/EtOAc = 5:1) afforded C-glycoside β-4 as white powder (462 mg, 78%).

15

Typical experimental procedure for the aryl C-glycosylation of neutral sugars is described for the reaction of phenol 3 and glycosyl acetate 5a: To a stirred mixture of Sc(OTf)3 (6.7 mg, 14 µmol), phenol 3 (87.7 mg, 0.269 mmol), powdered Drierite® (403 mg) in 1,2-dichloroethane (1.5 mL), was added acetate 5a (49.8 mg, 0.134 mmol) in 1,2-dichloroethane (1.0 mL) at -30 °C. After the temperature was gradually raised to -10 °C during 1.0 h, the reaction was quenched with sat. aq NaHCO3 solution. After filtration through a Celite pad, the products were extracted with EtOAc (3×), and the combined organic extracts were washed with brine, and dried over Na2SO4. Removal of the solvents in vacuo and purification on silica-gel preparative TLC (hexane/acetone = 2:1) afforded C-glycoside 6a as white powder (75.9 mg, 89%).