References
<A NAME="RD26103ST-1A">1a</A>
Hamashima Y.
Sawada D.
Kanai M.
Shibasaki M.
J. Am. Chem. Soc.
1999,
121:
2641
<A NAME="RD26103ST-1B">1b</A>
Shibasaki M.
Kanai M.
Funabashi K.
Chem. Commun.
2002,
1989
<A NAME="RD26103ST-2">2</A>
Baylis AB, and
Hillman MED. inventors; German Patent 2,155,113.
; Chem. Abstr. 1972, 77, 34174q
For reviews of the Baylis-Hillman reaction, see:
<A NAME="RD26103ST-3A">3a</A>
Drewes SE.
Roos GHP.
Tetrahedron
1988,
44:
4653
<A NAME="RD26103ST-3B">3b</A>
Basavaiah D.
Rao DP.
Hyma RS.
Tetrahedron
1996,
52:
8001
<A NAME="RD26103ST-3C">3c</A>
Ciganek E.
Org. React.
1997,
51:
201
<A NAME="RD26103ST-3D">3d</A>
Langer P.
Angew. Chem. Int. Ed.
2000,
39:
3049
<A NAME="RD26103ST-3E">3e</A>
Basavaiah D.
Rao AJ.
Satyanarayana T.
Chem. Rev.
2003,
103:
811
For mechanistic studies, see:
<A NAME="RD26103ST-4A">4a</A>
Hill JS.
Isaacs NS.
J. Phys. Org. Chem.
1990,
3:
285
<A NAME="RD26103ST-4B">4b</A>
Bode ML.
Kaye PT.
Tetrahedron Lett.
1992,
32:
5611
<A NAME="RD26103ST-4C">4c</A>
Fort Y.
Berthe MC.
Caubere P.
Tetrahedron
1992,
48:
6371
<A NAME="RD26103ST-5A">5a</A>
Gilbert A.
Heritage TW.
Isaacs NS.
Tetrahedron: Asymmetry
1991,
2:
965
<A NAME="RD26103ST-5B">5b</A>
Roos GHP.
Rampersadh P.
Synth. Commun.
1993,
23:
1261
<A NAME="RD26103ST-5C">5c</A>
Kundu MK.
Mukherjee SB.
Balu N.
Padmakumar R.
Bhat SV.
Synlett
1994,
444
<A NAME="RD26103ST-5D">5d</A>
Rafel S.
Leahy JW.
J. Org. Chem.
1997,
62:
1521
<A NAME="RD26103ST-5E">5e</A>
Aggarwal VK.
Mereu A.
Tarver GJ.
McCague R.
J. Org. Chem.
1998,
63:
7183
<A NAME="RD26103ST-5F">5f</A>
Kawamura M.
Kobayashi S.
Tetrahedron Lett.
1999,
40:
1539
<A NAME="RD26103ST-6A">6a</A>
Drewes SE.
Freese SD.
Emslie ND.
Roos GHP.
Synth. Commun.
1988,
18:
1565
<A NAME="RD26103ST-6B">6b</A>
Bailey M.
Marko IE.
Ollis D.
Rasmussen PR.
Tetrahedron Lett.
1990,
31:
4509
<A NAME="RD26103ST-7A">7a</A>
Oishi T.
Oguri H.
Hirama M.
Tetrahedron: Asymmetry
1995,
6:
1241
<A NAME="RD26103ST-7B">7b</A>
Brzezinski LJ.
Rafel S.
Leahy JW.
Tetrahedron
1997,
53:
16423
<A NAME="RD26103ST-7C">7c</A>
Hayase T.
Shibata T.
Soai K.
Wakatsuki Y.
Chem. Commun.
1998,
1271
<A NAME="RD26103ST-7D">7d</A>
Marko IE.
Giles PR.
Hindley PJ.
Tetrahedron
1997,
53:
1015
<A NAME="RD26103ST-7E">7e</A>
Barrett AGM.
Cook AS.
Kamimura A.
Chem. Commun.
1998,
2533
<A NAME="RD26103ST-8">8</A>
Iwabuchi Y.
Nakatani M.
Yokoyama N.
Hatakeyama S.
J. Am. Chem. Soc.
1999,
121:
10219
Other reports of catalytic asymmetric Baylis-Hillman reactions include:
<A NAME="RD26103ST-9A">9a</A>
Shi M.
Xu Y.-M.
Angew. Chem. Int. Ed.
2002,
41:
4507
<A NAME="RD26103ST-9B">9b</A>
Walsh LM.
Winn CL.
Goodman JM.
Tetrahedron Lett.
2002,
43:
8219
<A NAME="RD26103ST-9C">9c</A>
Balan D.
Adolfsson H.
Tetrahedron Lett.
2003,
44:
2521
<A NAME="RD26103ST-9D">9d</A>
Iwabuchi Y.
Nakatani M.
Yokoyama N.
Hatakeyama S.
Org. Lett.
2003,
3:
3103
<A NAME="RD26103ST-10A">10a</A>
Sharpless KB.
Amberg W.
Bennani YL.
Crispino GA.
Hartung J.
Jeong K.-S.
Kwong H.-L.
Morikawa K.
Wang Z.-M.
Xu D.
Zhang X.-L.
J. Org. Chem.
1992,
57:
2711
<A NAME="RD26103ST-10B">10b</A>
Crispino GA.
Jeong K.-S.
Kolb HC.
Wang Z.-M.
Xu D.
Sharpless KB.
J. Org. Chem.
1993,
58:
3785
<A NAME="RD26103ST-10C">10c</A>
Becker H.
Sharpless KB.
Angew. Chem., Int. Ed. Engl.
1996,
35:
449
<A NAME="RD26103ST-11">11</A>
Shi M.
Jiang J.-K.
Tetrahedron: Asymmetry
2002,
13:
1941
<A NAME="RD26103ST-12">12</A>
Experimental Procedure for the (DHQD)
2
AQN-Catalysed BH Reaction: Compound (
R
)-4: Methyl acrylate (45 µL, 0.5 mmol) was added to a stirred solution of p-nitrobenzaldehyde (76 mg, 0.5 mmol) and (DHQD)2AQN (43 mg, 10 mol%) in 0.5 mL of a solution of propionic acid in THF (0.1 M, 10 mol%).
The reaction was carried out at r.t. for 17 d. The crude mixture was then purified
by flash chromatography eluting with 3:7 EtOAc-Petrol (40-60), to give the Baylis-Hillman product (
R
)-4 (7 mg, 6%, 60% ee) as a light yellow oil. IR (film): 3493, 1716, 1521, 1349
cm-1. 1H NMR (500 MHz, CDCl3,): δ = 8.19 (d, 2 H, J = 8.7 Hz, o-NO2-ArH), 7.58 (d, 2 H, J = 8.7 Hz, m-NO2-ArH), 6.40 (s, 1 H, =CH
cis
Htrans), 5.88 (s, 1 H, =CHcis
H
trans
), 5.64 (d, 1 H, J = 6.2 Hz, CHOH), 3.75 (s, 3 H, OCH3), 3.37 (d, 1 H, J = 6.2 Hz, OH). 13C NMR (75 MHz, CDCl3): δ = 166.4 (C=O), 148.6 (NO2-ArC), 147.4 (p-NO2-ArC), 140.9 (C=CH2), 127.3 (C=CH2, m-NO2-ArC), 123.6 (o-NO2-ArC), 73.0 (COH), 52.3 (OCH3). MS (EI): m/z (%) = 236 (32) [M - H]+, 220 (67), 205 (57), 190 (31), 177 (98), 150 (100), 115 (37), 83 (34), 55 (61). Daicel
Chiralcel OD, 2-propanol:hexane = 2:98 to 4:96 for 40 min, 4:96 for 20 min, 4:96 to
10:90 for 30 min (0.5 mL/min), t
R = 65.60 (R) and 70.77 (S).
<A NAME="RD26103ST-13">13</A>
The low solubility of cinchona alkaloids limited the range of solvents. The rate of
the reaction increased at 40 °C, but no reaction occurred at -20 °C.
<A NAME="RD26103ST-14">14</A>
Aliquots of acetic-d
3
-acid-d (0.494 µL, 0.25 equiv) were added consecutively (up to 5 equiv) to a solution of
(DHQD)2AQN (30 mg, 0.035 mmol) in CDCl3. The protonation process was monitored by 1H NMR (500 MHz, CDCl3).