Abstract
Isomerization of oxime derivatives was researched in detail to find out the methods
for the syn -anti isomerization of O -substituted oximes. Based on these findings were developed simple methods for the
preparation of aza-heterocycles from both stereoisomers of oximes. Quinolines were
synthesized from β-aryl ketone oximes by treatment with trifluoroacetic anhydride
and 4-chloranil. γ,δ-Unsaturated O -methoxyacetyloximes were transformed to 2H -dihydropyrroles by reaction with methoxy-acetic acid.
Key words
nucleophilic substitution - oxime derivatives - quinolines - tetrahydroquinolines
- 2H -dihydropyrroles
References
<A NAME="RM02703SS-1A">1a </A>
Kusama H.
Yamashita Y.
Narasaka K.
Chem. Lett.
1995,
5
<A NAME="RM02703SS-1B">1b </A>
Kusama H.
Yamashita Y.
Uchiyama K.
Narasaka K.
Bull. Chem. Soc. Jpn.
1997,
71:
965
<A NAME="RM02703SS-2">2 </A>
Kusama H.
Uchiyama K.
Yamashita Y.
Narasaka K.
Chem. Lett.
1995,
715
<A NAME="RM02703SS-3A">3a </A>
Uchiyama K.
Yoshida M.
Hayashi Y.
Narasaka K.
Chem. Lett.
1998,
607
<A NAME="RM02703SS-3B">3b </A>
Yoshida M.
Uchiyama K.
Narasaka K.
Heterocycles
2002,
52:
681
<A NAME="RM02703SS-4">4 </A>
Mori S.
Uchiyama K.
Hayashi Y.
Narasaka K.
Nakamura E.
Chem. Lett.
1998,
111
<A NAME="RM02703SS-5">5 </A>
In this manuscript syn -isomers mean the oximes having hydroxy or acyloxy and a nucleophilic moiety in the
same side of oxime carbon-nitrogen double bond and anti -isomers mean the opposite.
<A NAME="RM02703SS-6A">6a </A>
Uno T.
Gong B.
Schultz PG.
J. Am. Chem. Soc.
1994,
116:
1145
<A NAME="RM02703SS-6B">6b </A>
Sharghi H.
Sarvari MH.
Synlett
2001,
99
<A NAME="RM02703SS-7">7 </A>
McCarty CG.
The Chemistry of the Carbon-Nitrogen Double Bond In The Chemistry of Functional Groups
Patai S.
John Wiley & Sons Inc.;
New York:
1996.
<A NAME="RM02703SS-8A">8a </A>
Hauser CR.
Hofffenberg DS.
J. Org. Chem.
1955,
20:
1491
<A NAME="RM02703SS-8B">8b </A>
Holloway CE.
Vuik CPJ.
Tetrahedron Lett.
1979,
1017
<A NAME="RM02703SS-9A">9a </A>
Hjeds H.
Hansen KP.
Jerslev B.
Acta. Chem. Scand.
1965,
19:
2166
<A NAME="RM02703SS-9B">9b </A>
Johnson JE.
Silk NM.
Arfan M.
J. Org. Chem.
1982,
47:
1958
<A NAME="RM02703SS-9C">9c </A>
Johnson JE.
Morales NM.
Gorczyca AM.
Dolliver DD.
McAllister MA.
J. Org. Chem.
2001,
66:
7979
<A NAME="RM02703SS-10A">10a </A>
Walter W.
Meese CO.
Schroder B.
Liebigs Ann. Chem.
1975,
1455
<A NAME="RM02703SS-10B">10b </A>
Dignam KJ.
Hegarty AF.
J. Chem. Soc., Perkin Trans. 2
1979,
1437
<A NAME="RM02703SS-10C">10c </A>
Johnson JE.
Silk NM.
Nalley EA.
Arfan M.
J. Org. Chem.
1981,
46:
546
<A NAME="RM02703SS-10D">10d </A>
Cunningham ID.
Hegarty AF.
J. Chem. Soc., Perkin Trans. 2
1986,
537
<A NAME="RM02703SS-11A">11a </A>
Idoux JP.
Sikorski JA.
J. Chem. Soc., Perkin Trans. 2
1972,
921
<A NAME="RM02703SS-11B">11b </A>
Bjørgo J.
Boyd DR.
Watson CG.
J. Chem. Soc., Perkin Trans. 2
1974,
1081
<A NAME="RM02703SS-11C">11c </A>
Satterthwait AC.
Jencks WP.
J. Am. Chem. Soc.
1974,
96:
7045
<A NAME="RM02703SS-11D">11d </A>
Jennings WB.
Al-Showiman S.
Tolley MS.
Boyd DR.
J. Chem. Soc., Perkin Trans. 2
1975,
1535
<A NAME="RM02703SS-11E">11e </A>
Conlon PR.
Sayer JM.
J. Org. Chem.
1979,
44:
262
<A NAME="RM02703SS-11F">11f </A>
Childs RF.
Dickie BD.
J. Am. Chem. Soc.
1983,
105:
5041
<A NAME="RM02703SS-11G">11g </A>
Pankratz M.
Childs RF.
J. Org. Chem.
1985,
50:
4553
<A NAME="RM02703SS-11H">11h </A>
Childs RF.
Shaw GS.
Lock CJL.
J. Am. Chem. Soc.
1989,
11:
5424
<A NAME="RM02703SS-12A">12a </A>
Gegte VN.
Salama MA.
Tilak BD.
Tetrahedron
1970,
26:
173
<A NAME="RM02703SS-12B">12b </A>
Muren JF.
Weissman A.
J. Med. Chem.
1971,
14:
49
<A NAME="RM02703SS-12C">12c </A>
Forrest TP.
Dauphinee GA.
Deraniyagara SA.
Can. J. Chem.
1985,
63:
412
<A NAME="RM02703SS-13A">13a </A>
Rishton GM.
Schwartz MA.
Tetrahedron Lett.
1988,
29:
2643
<A NAME="RM02703SS-13B">13b </A>
Kobayashi M.
Uneyama K.
Hamada N.
Kashino S.
Tetrahedron Lett.
1994,
35:
5235
Compound 9d was a single stereoisomer whose stereochemsitry was not determined. For the stereochemistry
of α-keto ester oximes see:
<A NAME="RM02703SS-14A">14a </A>
Ernest L.
J. Phys. Chem.
1961,
65:
491
<A NAME="RM02703SS-14B">14b </A>
Reinheckel H.
Jovtsheff A.
Spassov S.
Monatsh. Chem.
1965,
96:
1985
<A NAME="RM02703SS-15">15 </A>
Gawley RE.
Org. React.
1988,
35:
1
<A NAME="RM02703SS-16">16 </A> Intermolecular substitution reaction of O -methoxyacetyloximes see:
Baldovini N.
Kitamura M.
Narasaka K.
Chem. Lett.
2003,
548
<A NAME="RM02703SS-17">17 </A>
Yoshida M.
Kitamura M.
Narasaka K.
Chem. Lett.
2002,
144
<A NAME="RM02703SS-18A">18a </A>
Hawkes GE.
Herwig K.
Roberts JD.
J. Org. Chem.
1974,
39:
1017
<A NAME="RM02703SS-18B">18b </A>
Silverstein RM.
Webster FX.
Spectrometric Identification of Organic Compounds
John Wiley & Sons;
New York:
1998.
<A NAME="RM02703SS-19">19 </A>
The spectral data were in good agreement with those of the authentic sample (commercially
available from Tokyo Chemical Industry).
<A NAME="RM02703SS-20">20 </A>
Kametani T.
Kajiwara M.
Fukumoto K.
Tetrahedron
1974,
30:
1053
<A NAME="RM02703SS-21">21 </A>
The spectral data were in good agreement with those of the authentic sample.
<A NAME="RM02703SS-22">22 </A> For spectra data of 3,4-dihydroquinoline hydrobromide see:
Cacchi S.
Palmieri G.
Tetrahedron
1983,
39:
3373
<A NAME="RM02703SS-23">23 </A>
Kawase M.
Kikugawa Y.
Chem. Pharm. Bull.
1981,
29:
1615
<A NAME="RM02703SS-24">24 </A>
Uchiyama K.
Hayashi Y.
Narasaka K.
Tetrahedron
1999,
55:
8915