Synlett 2003(13): 1969-1972  
DOI: 10.1055/s-2003-42046
LETTER
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Enantiopure 2,5-Dihydro-3-iodofurans and Substituted 3-Iodofurans by Iodocyclization of 4-Hydroxy-1,2-alkadienyl Carbamates

Carsten Schultz-Fademrecht, Maik Zimmermann, Roland Fröhlich, Dieter Hoppe*
Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstr. 40, 48149 Münster, Germany
Fax: +49(251)8336531; e-Mail: dhoppe@uni-muenster.de;
Further Information

Publication History

Received 29 July 2003
Publication Date:
08 October 2003 (online)

Abstract

Enantiopure cis-2,5-dihydro-3-iodofurans and substitute­d 3-iodofurans were prepared by iodine-induced cyclization­ of enantiopure syn-4-hydroxy-1,2-alkadienyl carbamate­s. These products represent highly functionalized intermedi­ates which can be readily elaborated, for example, in transitio­n metal-catalyzed cross-coupling reactions.

    References

  • For reviews, see:
  • 2a Diederich F. Stang PJ. Metal-Catalyzed Cross-coupling Reactions   Wiley-VCH; Weinheim: 1998. 
  • 2b Negishi E.-I. de Meijere A. Handbook of Organopalladium Chemistry for Organic Synthesis   John Wiley & Sons; New York: 2002. 
  • 3 Marino G. Adv. Heterocycl. Chem.  1971,  9:  235 
  • 4 Gschwend HW. Rodriguez HR. Org. React.  1979,  26:  1 
  • 5 Bew SP. Knight DW. J. Chem. Soc., Chem. Commun.  1996,  1007 
  • 6a Marshall JA. Wang X. J. Org. Chem.  1990,  55:  2995 
  • 6b Marshall JA. Wang X. J. Org. Chem.  1991,  56:  4913 
  • 6c Marshall JA. DuBay WJ. J. Am. Chem. Soc.  1992,  114:  1450 
  • 6d Marshall JA. DuBay WJ. J. Org. Chem.  1993,  58:  3435 
  • 6e Marshall JA. Bartley GS. J. Org. Chem.  1994,  59:  7169 
  • 7a Hoppe D. Riemenschneider C. Angew. Chem. Int. Ed. Engl.  1983,  22:  54 ; Angew. Chem. 1983, 95, 64
  • 7b Hoppe D. Gonschorrek C. Schmidt D. Egert E. Tetrahedron  1987,  43:  2457 
  • 7c Dreller S. Hoppe D. Synthesis  1991,  397 
  • 7d Schultz-Fademrecht C. Wibbeling B. Fröhlich R. Hoppe D. Org. Lett.  2001,  3:  1221 
  • For reviews, see:
  • 10a Dowle MD. Davies DI. Chem. Soc. Rev.  1979,  8:  171 
  • 10b Dean FM. Sargent MV. In Comprehensive Heterocyclic Chemistry   Vol. 4:  Katritzky AR. Rees CW. Pergamon; Oxford: 1984.  p.531-712  
  • 10c Benassi R. In Comprehensive Heterocyclic Chemistry II   Vol. 2:  Katritzky AR. Rees CW. Scriven EFV. Pergamon; Oxford: 1996.  p.259-436  
  • 11 Shingu K. Hagishita S. Nakagawa M. Tetrahedron Lett.  1967,  4371 
  • X-ray crystal structure analysis of 7a: formula C34H41IN2O3, M = 652.59, colorless crystal, 0.35 × 0.30 × 0.30 mm, a = 13.950(1), b = 15.173(1), c = 15.538(1) Å, V = 3288.8(4) Å3, ρcalc = 1.318 g cm- 3, µ = 10.07 cm- 1, empirical absorption correction via SORTAV (0.719 T 0.752), Z = 4, orthorhombic, space group P 212121 (No. 19), λ = 0.71073 Å, T = 198 K, ω and φ scans, 21235 reflections collected (±h, ±k, ±l), [(sinθ/λ)] = 0.66 Å- 1, 7690 independent (Rint = 0.034) and 6050 observed reflections [I 2σ(I)], 366 refined parameters, R = 0.041, ωR 2 = 0.088, max. residual electron density 0.80 (-0.97) e Å- 3, Flack parameter -0.03(2), hydrogens calculated and riding. Data set was collected with KappaCCD diffractometer, equipped with a rotating anode generator Nonius FR591. Programs used: data collection COLLECT (Nonius B.V., 1998), data reduction Denzo-SMN:
  • 12a Otwinowski Z. Minor W. Methods Enzymol.  1997,  276:  307 
  • 12b Absorption correction SORTAV: Blessing RH. Acta Cryst.  1995,  A51:  33 
  • 12c Also see: Blessing RH. J. Appl. Cryst.  1997,  30:  421 
  • 12d Structure solution SHELXS-97: Sheldrick GM. Acta Cryst.  1990,  A46:  467 
  • 12e Structure refinement SHELXS-97: Sheldrick GM. SHELXS-97   Universität Göttingen; Germany: 1997. 
  • 12f Graphics SCHAKAL: Keller E. SCHAKAL   Universität Freiburg; Germany: 1997. 
  • 12g

    Crystallogaphic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication CCDC-204009. Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: int. code +44(1223)336033, e-mail: deposit@ccdc.cam.ac.uk].

  • 14 Stähle M. Schlosser M. Angew. Chem., Int. Ed. Engl.  1979,  18:  875 ; Angew. Chem. 1979, 91, 938
  • 15 Reich HJ. Olson RE. J. Org. Chem.  1987,  52:  2315 
1

X-ray structure analysis.

8

Zimmermann, M.; Hoppe, D., manuscript in preparation.

9

Typical Experimental Procedure and Spectral Data for 7 and 8:
NaI (1.1 equiv) was added to 4-hydroxy-1,2-alkadienyl carbamate 5 or 6 (1.0 equiv) in CH2Cl2-MeOH (3:1, 8 mL/mmol) under an Ar atmosphere at 0 °C in the dark. N-Chlorosuccinimide (1.0 equiv) in CH2Cl2 was added dropwise within 5 min. The solution was allowed to stir for 5 min at r.t. and diluted with Et2O. The organic phase was washed with sat NaHCO3 solution (1 ×), sat Na2S2O3 solution (1 ×) and brine (1 ×). The organic phase was dried (MgSO4), concentrated in vacuo and the residue purified by flash column chromatography [SiO2, Et2O-pentane, 5%(vol) Et3N]. To remove the triethylamine, the collected fraction was washed with sat NH4Cl solution (2 ×), dried (MgSO4), and concentrated in vacuo to give the 2,5-dihydro-3-iodofurans 7 and 8, respectively.
7a: mp 140 °C (Et2O); Rf = 0.59 (Et2O-petroleum ether, 1:5); [α]D 20 = -4.2 (c 1.00, CHCl3); 1H NMR (400 MHz, CDCl3): δ = 0.62 (br d, 6 H), 1.25 (s, 3 H), 1.28 (br s, 6 H), 2.93-2.99 (m, 1 H), 3.10-3.20 (m, 2 H), 3.39-3.57 (m, 2 H), 3.39, 4.14 (each d, 2 J = 13.2 Hz, 4 H), 4.40-4.43 (m, 1 H), 6.73-6.77 (m, 1 H), 7.16-7.39 (m, 15 H); 13C NMR (100 MHz, CDCl3): δ = 14.4, 20.5, 28.8, 45.9, 55.4, 60.2, 86.1, 88.3, 103.2, 125.9, 127.0, 128.1, 128.4, 129.7, 129.9, 139.9, 148.1, 152.9; Anal. Calcd for C34H41IN2O3 (652.61): C, 62.57; H, 6.33; N, 4.29. Found: C, 62.53; H, 6.34; N, 4.08.
8a: mp 111 °C (Et2O); Rf = 0.33 (Et2O-petroleum ether, 1:5); [α]D 20 = -1.4 (c 1.00, CHCl3); 1H NMR (300 MHz, CDCl3): δ 1.23 (br d, 12 H), 1.44 (s, 3 H), 2.58, 2.88 (each dd, 2 J = 14.7 Hz, 3 J = 4.4 Hz, 3 J = 9.5 Hz, 2 H), 3.16 (ddd, 3 J = 1.1 Hz, 3 J = 4.4 Hz, 3 J = 9.5 Hz, 1 H), 3.62, 3.92 (each d, 2 J = 14.1 Hz, 4 H), 3.86-4.01 (m, 2 H), 5.19-5.25 (m, 3 J = 1.1 Hz, 1 H), 6.86-6.89 (m, 1 H), 6.90-7.28 (m, 15 H); 13C NMR (100 MHz, CDCl3): δ = 14.5, 21.1, 32.1, 46.1, 54.2, 59.0, 85.9, 87.5, 105.0, 125.7, 126.6, 127.9, 128.0, 128.6, 129.5, 139.9, 140.1, 147.6, 153.9; Anal. Calcd for C34H41IN2O3 (652.61): C, 62.57; H, 6.33; N, 4.29. Found: C, 62.59; H, 6.44; N, 4.40.
7b: mp 134 °C (Et2O); Rf = 0.61 (Et2O-petroleum ether = 1:5); [α]D 20 = -86.6 (c 1.00, CHCl3); 1H NMR (400 MHz, CDCl3): δ = 0.63 (br d, 3 J = 54.1 Hz, 6 H), 0.93, 0.99 (each d, 3 J = 6.6 Hz, 6 H), 1.26 (br s, 6 H), 1.34 (s, 3 H), 1.51, 1.91 (each ddd, 2 J = 13.2 Hz, 3 J = 3.6 Hz, 3 J = 4.3 Hz, 3 J = 10.0 Hz, 3 J = 10.9 Hz, 2 H), 1.79 (m, 3 J = 4.3 Hz, 3 J = 6.6 Hz,
3 J = 10.0Hz, 1 H), 2.88 (ddd, 3 J = 54.1 Hz, 3 J = 3.8 Hz,
3 J = 10.9 Hz, 1 H), 3.28, 3.96 (each d, 2 J = 13.1 Hz, 4 H), 3.44 (br d, 3 J = 6.6 Hz, 2 H), 4.67-4.71 (m, 3 J = 3.8 Hz, 1 H), 6.71-6.74 (m, 1 H), 7.15-7.31 (m, 10 H); 13C NMR (75 MHz, CDCl3): δ = 14.6, 20.5, 21.9, 24.2, 24.9, 31.4, 45.1, 55.1, 55.4, 86.0, 89.4, 103.2, 126.7, 127.9, 129.9, 140.4, 148.5, 153.0; Anal. Calcd for C31H43IN2O3 (618.59): C, 60.19; H, 7.01; N, 4.53. Found: C, 60.09; H, 6.86; N, 4.39.
8b: mp 155 °C (Et2O); Rf = 0.32 (Et2O-petroleum ether = 1:5); [α]D 20 = -55.2 (c 1.00, CHCl3); 1H NMR (300 MHz, CDCl3): δ = 0.39, 0.81 (each d, 3 J = 6.8 Hz, 6 H), 0.64, 1.65 (each ddd, 2 J = 14.4 Hz, 3 J = 2.5 Hz, 3 J = 2.6 Hz, 3 J = 10.7 Hz, 3 J = 11.0 Hz, 2 H), 1.22 (d, 3 J = 6.8 Hz, 12 H), 1.57 (s, 3 H), 1.80-1.99 (m, 3 J = 2.6 Hz, 3 J = 6.8 Hz, 3 J = 10.7 Hz, 1 H), 2.83 (ddd, 3 J = 1.2 Hz, 3 J = 2.5 Hz, 3 J = 11.0 Hz, 1 H), 3.49, 3.99 (each d, 2 J = 13.9 Hz, 4 H), 3.69-4.07 (m, 3 J = 6.8 Hz, 2 H), 5.19-5.24 (m, 3 J = 1.2 Hz, 1 H), 6.79-6.84 (m, 1 H), 7.15-7.39 (m, 10 H); 13C NMR (75 MHz, CDCl3): δ = 14.6, 21.1, 21.8, 23.6, 24.2, 34.8, 46.1, 54.4, 54.7, 85.2, 86.6, 104.9, 126.8, 128.1, 129.1, 140.5, 147.6, 154.2; Anal. Calcd for C31H43IN2O3 (618.59): C, 60.19; H, 7.01; N, 4.53. Found: C, 59.95; H, 7.14; N, 4.33.
7c: mp 64 °C (Et2O); Rf = 0.65 (Et2O-petroleum ether = 1:5); [α]D 20 = +34.3(c 1.00, CHCl3); 1H NMR (300 MHz, CDCl3): δ = 0.00 (s, 9 H), 0.61 (br d, 6 H), 1.28 (br. s, 6 H), 2.96, 3.07 (each dd, 2 J = 12.8 Hz, 3 J = 4.1 Hz, 3 J = 11.1 Hz, 2 H), 3.33 (dt, 3 J = 3.4 Hz, 3 J = 4.1 Hz, 3 J = 11.1 Hz, 1 H), 3.33-3.50 (m, 2 H), 3.50, 4.15 (d, 2 J = 13.6 Hz, 4 H), 4.66 (dd, 4 J = 2.8 Hz, 3 J = 3.4 Hz, 1 H), 6.68 (d, 4 J = 2.8 Hz, 1 H), 7.13-7.34 (m, 15 H); 13C NMR (75 MHz, CDCl3): δ = -1.6, 20.5, 30.2, 45.8, 55.2, 62.6, 93.2, 99.7, 104.9, 125.9, 126.9, 128.2, 128.4, 129.4, 130.1, 139.8, 140.3, 151.3, 152.9; Anal. Calcd for C36H47IN2O3Si (710.76): C, 60.83; H, 6.67; N, 3.94. Found: C, 61.01; H, 6.57; N, 3.58.
8c: mp = 122 °C (Et2O); Rf = 0.47 (Et2O-petroleum ether = 1:5); [α]D 20 = -27.3 (c 1.00, CHCl3); 1H NMR (300 MHz, CDCl3): δ = 0.00 (s, 9 H), 1.22 (br. s, 12 H), 2.57, 2.94 (each dd, 2 J = 14.7 Hz, 3 J = 3.8 Hz, 3 J = 11.0 Hz, 2 H), 3.28 (ddd, 3 J = 1.5 Hz, 3 J = 3.8 Hz, 3 J = 11.0 Hz, 1 H), 3.71, 3.85 (each d, 2 J = 14.9 Hz, 4 H), 3.77-4.08 (m, 2 H), 5.45 (dd, 3 J = 1.5 Hz, 4 J = 1.2 Hz, 1 H), 6.79 (d, 4 J = 1.2 Hz, 1 H), 6.95-7.32 (m, 15 H); 13C NMR (75 MHz, CDCl3): δ = -1.2, 21.1, 32.5, 46.1, 53.9, 59.7, 93.1, 98.6, 106.9, 126.0, 126.5, 127.9, 128.1, 128.4, 129.8, 140.1, 140.2, 151.2, 153.8; Anal. Calcd for C36H47IN2O3Si (710.76): C, 60.83; H, 6.67; N, 3.94. Found: C, 61.09; H, 6.46; N, 3.69.

13

Typical Experimental Procedure and Spectral Data for 11: I2 (1.1 equiv) was added to 4-hydroxy-1,2-alkadienyl carbamate 4 (1.0 equiv) in DMSO-H2O (6:1, 9 mL/mmol) under an Ar atmosphere. The mixture was stirred at 90 °C for 3 h. The solution was allowed to cool and diluted with Et2O. The organic phase was washed with H2O (2 ×), sat Na2SO3 solution (1 ×), H2O (1 ×) and brine (1 ×). The organic layer was dried (Na2SO4), concentrated in vacuo and the residue purified by flash column chromatography (SiO2, pentane). As some 3-iodofurans 11 are sensitive to air, they were stored in the freezer under Ar.
11a: Rf = 0.78 (Et2O-petroleum ether, 1:1); 1H NMR (300 MHz, C6D6): δ = 0.47 (s, 9 H), 1.25 (d, 3 J = 6.9 Hz, 6 H), 3.13 (sept, 3 J = 6.9 Hz, 1 H), 7.24 (s, 1 H); 13C NMR (75 MHz, C6D6): δ = 0.8, 21.9, 28.6, 70.5, 113.3, 144.9, 166.9; Anal. Calcd for C10H17IOSi (308.23): C, 38.97; H, 5.56. Found: C, 39.03; H, 5.66.
11b: Rf = 0.66 (Et2O-petroleum ether, 1:1); 1H NMR (300 MHz, C6D6): δ = 0.41 (s, 9 H), 2.13 (s, 3 H), 7.19 (s, 1 H); 13C NMR (75 MHz, C6D6): δ = 0.0, 14.1, 70.2, 114.6, 144.3, 158.0; Anal. Calcd for C8H13IOSi (280.18): C, 34.29; H, 4.68. Found: C, 34.37; H, 4.75.
11c: Rf = 0.70 (Et2O-petroleum ether, 1:1); 1H NMR (300 MHz, C6D6): δ = 0.36 (s, 9 H), 7.44-7.13 (m, 6 H); 13C NMR (75 MHz, C6D6): δ = 0.4, 71.0, 116.7, 127.6, 128.2, 128.4, 131.9, 145.6, 160.5; Anal. Calcd. for C13H15IOSi (342.25): C, 45.62; H, 4.42. Found: C, 45.85; H, 4.58.
11d: Rf = 0.71 (Et2O-petroleum ether, 1:1); 1H NMR (300 MHz, C6D6): δ = 0.49 (s, 9 H), 1.29 (d, 3 J = 6.9 Hz, 6 H), 2.19 (s, 3 H), 3.13 (sept, 3 J = 6.9 Hz, 1 H); 13C NMR (75 MHz, C6D6): δ = 0.8, 13.0, 22.1, 28.6, 69.4, 110.9, 151.4, 165.1; Anal. Calcd for C11H19IOSi (322.26): C, 41.00; H, 5.94. Found: C, 40.59; H, 6.13.
11e: Rf = 0.74 (Et2O-petroleum ether, 1:1); 1H NMR (300 MHz, C6D6): δ = 0.46 (s, 9 H), 2.17 (s, 3 H), 2.19 (s, 3 H); 13C NMR (75 MHz, C6D6): δ = 0.0, 12.4, 14.2, 68.9, 115.2, 150.9, 156.0; MS (EI, 70 eV): m/z (%) = 294(100), 288(93), 185(15), 152(22), 109(11), 73(28); HRMS (EI) calcd for C9H15IOSi (294.20): 293.9936. Found: 293.9932.
11f: Rf = 0.71 (Et2O-petroleum ether, 1:1); 1H NMR (300 MHz, C6D6): δ = 1.17 (d, 3 J = 6.9 Hz, 6 H), 1.85 (s, 3 H), 2.82 (sept, 3 J = 6.9 Hz, 1 H), 7.15 (s, 1 H); 13C NMR (75 MHz, C6D6): δ = 11.0, 21.5, 27.4, 72.9, 115.7, 143.0, 156.3; MS (EI, 70 eV): m/z (%) = 250(51), 235(100), 127(2), 108(8), 80(13); HRMS (EI) calcd for C8H11IO (250.08): 249.9854. Found: 249.9844.
11g: Rf = 0.64 (Et2O-petroleum ether, 1:1); 1H NMR (300 MHz, C6D6): δ = 2.09 (s, 3 H), 7.66-7.57 and 7.33-7.15 (m, 6 H); 13C NMR (75 MHz, C6D6): δ = 12.9, 75.2, 119.4, 126.4, 128.0, 129.2, 131.8, 144.4, 149.8; Anal. Calcd for C11H9IO (284.09): C, 46.51; H, 3.19. Found: C, 46.38; H, 3.07.
11h: Rf = 0.74 (Et2O-petroleum ether, 1:1); 1H NMR (300 MHz, C6D6): δ = 1.23 (d, 3 J = 6.9 Hz, 6 H), 1.90 (s, 3 H), 2.19 (s, 3 H), 2.87 (sept, 3 J = 6.9 Hz, 1 H); 13C NMR (75 MHz, C6D6): δ = 10.3, 12.2, 20.4, 25.9, 70.1, 114.5, 148.6, 153.0; Anal. Calcd for C9H13IO (264.10): C, 40.93; H, 4.96. Found: C, 40.96; H, 4.94.
11i: Rf = 0.66 (Et2O-petroleum ether, 1:1); 1H NMR (300 MHz, CDCl3): δ = 1.03 (s, 9 H), 1.74 (s, 3 H), 4.62 (s, 2 H), 7.31-7.45 and 7.63-7.69 (m, 11 H); 13C NMR (75 MHz, CDCl3): δ = 11.0, 19.7, 27.1, 57.5, 72.3, 120.6, 128.1, 130.1, 133.7, 136.0, 144.2, 149.7; Anal. Calcd for C22H25IO2Si (476.42): C, 55.46; H, 5.29. Found: C, 55.43; H, 5.59.
11j: Rf = 0.68 (Et2O-petroleum ether, 1:1); 1H NMR (300 MHz, C6D6): δ = 0.97 (t, 3 J = 7.0 Hz, 3 H), 1.61-1.73 (m, 2 H), 2.61 (t, 3 J = 8.0 Hz, 2 H), 7.11-7.30 and 7.66-7.71 (m, 6 H); 13C NMR (75 MHz, C6D6): δ = 14.1, 23.3, 28.5, 73.9, 113.0, 123.4, 127.8, 128.9, 131.4, 144.3, 149.6; Anal. Calcd. for C13H13IO (312.15): C, 50.02; H, 4.20. Found: C, 49.92; H, 4.01.