Synlett 2003(12): 1826-1829  
DOI: 10.1055/s-2003-41477
LETTER
© Georg Thieme Verlag Stuttgart · New York

l-α-Methylhomoisoserine: A New Versatile Building Block for Peptide and Depsipeptide Modification [1]

Gábor Radicsa, Beate Kokscha, Salah M. El-Kousyb, Jan Spenglera, Klaus Burger*a
a Department of Organic Chemistry, University of Leipzig, Johannisallee 29, 04103 Leipzig, Germany
Fax: +49(341)9736599; e-Mail: burger@organik.chemie.uni-leipzig.de;
b Faculty of Science, Minufiya University, Shebin El-Kom, Egypt
Further Information

Publication History

Received 20 June 2003
Publication Date:
19 September 2003 (online)

Abstract

An efficient access to l-α-methylhomoisoserine derivatives starting from l -citramalic acid is described. The new compounds are GABA derivatives and represent new, versatile building blocks for peptide and depsipeptide modification.

    References

  • Hexafluoroacetone as protecting and activating reagent in α-hydroxy acid chemistry, Part 4.
  • 1a For Part 3, see: Radics G. Pires R. Koksch B. El-Kousy SM. Burger K. Tetrahedron Lett.  2003,  44:  1059 
  • 1b Part 2: Burger K. Böttcher C. Radics G. Hennig L. Tetrahedron Lett.  2001,  42:  3061 
  • 2 Soth MJ. Nowick JS. J. Org. Chem.  1999,  64:  276 ; and references cited therein
  • 3a Seebach D. Matthews JL. Chem. Commun.  1997,  2015 
  • 3b Seebach D. Matthews JL. Meden A. Wessel T. Baerlocher C. McCusker LB. Helv. Chim. Acta  1997,  80:  173 
  • 3c Krauthäuser S. Christianson LA. Powell DR. Gellman SH. J. Am. Chem. Soc.  1997,  119:  11719 
  • 3d Gellman SH. Acc. Chem. Res.  1998,  31:  173 
  • 3e Banerjee A. Balaram P. Curr. Sci.  1997,  73:  1067 
  • 3f Brenner M. Seebach D. Helv. Chim. Acta  2001,  84:  1181 
  • 3g Seebach D. Sifferlen T. Bierbaum DJ. Rueping M. Jaun B. Schweizer B. Schaefer J. Mehta AK. O’Connor RD. Meyer BH. Ernst M. Glättli ?. Helv. Chim. Acta  2002,  85:  2877 
  • 3h Gademann K. Häne A. Rueping M. Jaun B. Seebach D. Angew. Chem., Int. Ed.  2003,  42:  1534 
  • 4a Woll MG. Lai JR. Guzei IA. Taylor SJC. Smith MEB. Gellman SH. J. Am. Chem. Soc.  2001,  123:  11077 
  • 4b Karle IL. Pramanik A. Banerjee A. Bhattacharjya S. Balaram P. J. Am. Chem. Soc.  1997,  119:  9087 
  • 5a Maji SK. Banerjee R. Velmurugan D. Razak A. Fun HK. Banerjee A. J. Org. Chem.  2002,  67:  633 ; and references cited therein
  • 5b Hintermann T. Gademann K. Jaun B. Seebach D. Helv. Chim. Acta  1998,  81:  983 
  • 6 Frackenpohl J. Arvidsson PI. Schreiber JV. Seebach D. ChemBioChem.  2001,  2:  445 
  • 7 Hanessian S. Luo X. Schaum R. Michnick S. J. Am. Chem. Soc.  1998,  120:  8569 
  • 8a Kondo S. Tamura A. Gomi S. Ikeda Y. Takeuchi T. Mitsuhashi S. J. Antibiot.  1993,  46:  310 
  • 8b Kawaguchi H. Naito T. In Chronicles of Drug Discovery   2:  Bindra JS. Lednicer D. J. Wiley & Sons; New York NY: 1983.  p.207 
  • 8c Kawasaki H. Naito T. J. Antibiot.  1972,  25:  895 
  • 8d Woo WPK. Dion H. Bartz QR. Tetrahedron Lett.  1971,  36:  2617 
  • 9 Shioiri T. Hamada Y. Matsuura F. Tetrahedron  1995,  51:  3939 
  • 10 Harris K. Sih CJ. Biocatalysis  1992,  5:  195 
  • 11a Iriuchijima S. Ogawa M. Synthesis  1982,  41 
  • 11b Brehm L. Krogsgaard-Larsen P. Acta Chem. Scand.  1979,  B33:  52 
  • 11c Yoneta Y. Shibahara S. Fukatsu S. Seki S. Bull. Chem. Soc. Jpn.  1978,  51:  3296 
  • 11d Horiuchi Y. Akita E. Ito T. Agric. Biol. Chem.  1976,  40:  1649 
  • 11e Yamada Y. Okada H. Agric. Biol. Chem.  1976,  40:  1437 
  • 12a Weygand F. Burger K. Chem. Ber.  1966,  99:  2880 
  • 12b Pires R. Burger K. Synthesis  1996,  281 
  • 13 Burger K. Windeisen E. Heistracher E. Lange T. Abdel Aleem HAA. Monatsh. Chem.  2002,  133:  41 
  • 14a Doyle MP. Mc Kervey MA. Chem. Commun.  1997,  983 
  • 14b Meier H. Zeller K.-P. Angew. Chem., Int. Ed. Engl.  1974,  14:  32 
  • 14c Guibourdenche C. Seebach D. Natt F. Helv. Chim. Acta  1997,  80:  1 
  • 14d Leggio A. Ligouri A. Procopio A. Sindona G. J. Chem. Soc., Perkin Trans. 1  1997,  1969 
  • 15 Sheradsky T. In The Chemistry of the Azido Group   Patai S. Interscience Publishers, Wiley & Sons; Chichester: 1971.  p.341 
  • 18a

    (2 S)-4- tert -Butyloxycarbonylamino-2-hydroxy-2-methyl-butanoic acid methyl ester (10a): A solution of 9a (200 mg, 0.52 mmol) in dry MeOH (15 mL) was heated for 72 h. When the reaction was complete (TLC control), the solvent was evaporated in vacuo and the remaining residue purified by column chromatography (eluent: CHCl3-MeOH, 20:1, Rf = 0.32). Yield: 0.63 mg (49%) 9a, colorless oil; [a]D = -4.2 (c 0.48, MeOH). 1H NMR (CDCl3): d = 1.35 (s, 3 H, CH3), 1.36 [s, 9 H, C(CH3)3], 1.74 (m, 1 H, CH2CH2), 2.01 (m, 1 H, CH2CH2), 2.97 (s, 1 H, OH), 3.10 (m, 1 H, NCH2), 3.20 (m, 1 H, NCH2), 3.72 (s, 3 H, OCH3), 4.83 (br s, 1 H, NH). 13C NMR (CDCl3): d = 26.60, 28.36, 36.21, 39.15, 52.89, 74.75, 83.39, 155.97, 177.48. MS (ESI): m/z = 270.13119 [M + Na]+ 270.13144, calcd: 270.13119; [2 M + Na]+ 517.27351, calcd: 517.27317.

  • 18b

    (2S)-4- tert- Butyloxycarbonylamino-2-hydroxy-2-methyl-butan-hydroxamate ( 10b): To a stirred solution of 9a (200 mg, 0.52 mmol) in DMF, HCl·NH2OH (40 mg, 0.58 mmol) and propylene oxide (34 mg, 0.58 mmol) were added. After 24 h the reaction was complete (TLC control). The solvent was evaporated in vacuo and the residue purified by column chromatography (eluent: CHCl3-MeOH 10:1, Rf = 0.11). Yield: 88 mg (67%) 10b, white hygroscopic solid; [α]D = -3.0 (c 0.5, MeOH). 1H NMR (DMSO-d 6): δ = 1.22 (s, 3 H, CH3), 1.35 [s, 9 H, C(CH3)3], 1.56 [m, 1 H, CH2CH2], 1.75 (m, 1 H, CH2CH2), 2.83 (m, 1 H, NCH2), 3.01 (m, 1 H, NCH2), 5.14 (s, 1 H, OH), 6.59 (br s, 1 H, NH), 8.59 (br s, 1 H, NHOH), 10.29 (br s, 1 H, NHOH). 13C NMR (DMSO-d 6): δ = 26.42, 28.16, 35.65, 39.90, 73.18, 77.27, 155.33, 171.67. MS (ESI): m/z = [M + Na]+ 271.12670; calcd 271.12644; [2 M + Na]+ 519.26389; calcd 519.26366.

  • 19 Vasanthakumar G.-R. Suresh Babu VV. Tetrahedron Lett.  2003,  44:  4099 ; and references cited therein
  • 20a Murahashi D. Oda T. Sugahara S. Masui Y. J. Org. Chem.  1990,  50:  1744 
  • 20b Burke TR. Fesen MR. Mazumder A. Wang J. Carothers AM. Grunberger D. Drisscoll J. Kohn K. Pommier Y. Med. Chem.  1995,  38:  4171 
  • 21a Bourdel E. Doulut S. Jerretou G. Labbe-Jullie C. Fehrentz J.-A. Doumbia D. Kitabgi P. Martinez J. Int. J. Peptide Protein Res.  1996,  48:  148 
  • 21b Pirrung MC. Cao J. Chen J. J. Org. Chem.  1995,  60:  5790 
  • 22 Johnson JE. Springfield JR. Hwang JS. Haynes LJ. Cunningham WC. Mc Claugherty DL. Tetrahedron Lett.  1971,  36:  284 
  • 23 Burger K. Schedel H. Spengler J. Amino Acids  1999,  16:  287 
  • 24 Pumpor K. Windeisen E. Burger K. Heterocycl. Chem.  2003,  40:  329 
  • 27 Böttcher C. Burger K. Tetrahedron Lett.  2003,  44:  4223 
16

( 5S )-5-(2-Isocyanatoethyl)-5-methyl-2,2-bis(trifluoro-methyl)-1,3-dioxolan-4-one ( 8): To a solution of acid chloride 7 (3.94 g, 11.98 mmol) in anhyd toluene (20 mL) trimethylsilyl azide (1.52 g, 13.18 mmol) was added with stirring, then the reaction mixture was heated (85 °C, bath temperature). After 12 h the reaction was complete (19F NMR analysis), the solvent was evaporated in vacuo and the residue distilled under reduced pressure. Yield: 2.59 g (70%) 8, yellow oil, bp 34-38 °C/0.34 mbar; [α]D = -6.8 (c 1.33, CH2Cl2). 1H NMR (CDCl3): δ = 1.66 (s, 3 H, CH3), 2.17 (br t, 2 H, 3 J = 7 Hz, NHCH2CH 2 ), 3.59 (m, 2 H, NHCH 2 ). 13C NMR (CDCl3): δ = 22.33, 37.38 38.54, 80.59, 97.37 (sept., J = 35.9 Hz), 119.32 (q, J = 288.0 Hz), 122.83, 169.87.
19F NMR (CDCl3): δ = -81.14 (m, 6 F, 2 × CF3). MS (EI): m/z (%) = 307 [M]+(3), 238 (28), 169 (14), 72 (66), 56 (100).

17

( 5S ) - 5-(2- tert- Butyloxycarbonylamino)ethyl-5-methyl-2,2-bis(trifluoromethyl)-1,3-dioxolan-4-one ( 9a): A solution of 8 1.0 g (3.25 mmol) in t-BuOH(5 mL) was heated (60 °C, bath temperature) for 3 h. After evaporation of the solvent the residue was purified by column chromatography (eluent: CH2Cl2, Rf = 0.11). Yield: 868 mg (70%) 9a, mp 49-51 °C; [α]D = -4.0 (c 1, CH2Cl2). 1H NMR (CDCl3): δ = 1.43 (s, 9 H, C(CH3)3), 1.65 (s, 3 H, CH3), 2.07 (m, 2 H, CH2), 3.29 (m, 1 H, NCH2), 3.44 (m, 1 H, NCH2), 4.70 (m, 1 H, NH). 13C NMR (CDCl3): δ = 22.02, 28.35, 35.11, 37.48, 79.77, 81.13, 97.08 (sept., J = 35.7 Hz), 119.16 (q, J = 288.5 Hz), 155.72, 170.22.
19F NMR (CDCl3): δ = -81.23 (m, 6 F, 2 × CF3). MS (EI) m/z (%) = 381 [M]+ (2), 367 (5), 328 (16), 282 (14), 59 (93), 57 (100).
9b: A solution of 8 (2.0 g, 6.51 mmol) and benzyl alcohol (739 mg, 6.84 mmol) in anhyd CHCl3 (10 mL) was heated under reflux for 12 h. Purification: column chromatography (eluent: CH2Cl2, Rf = 0.32). Yield: 2.01 g (74%) 9b, colorless oil.
9c: A solution of 8 (2.0 g, 6.51 mmol) and 9-fluorenylmethanol (1.34 g, 6.84 mmol) in CHCl3 (10 mL) was heated under reflux for 12 h. Purification: column chromatography (eluent: CH2Cl2, Rf = 0.30). Yield: 3.50 g (76%) 9c, mp 75-78 °C.

25

[(2S)-4-(9-Fluorenylmethyl)oxycarbonylamino-2-hydroxy-2-methyl-butyryl]-phenylalanine tert- butyl ester ( 11b): To a stirred solution of 9c (200 mg, 0.40 mmol) in DMF (2 mL) HCl·NH2-Phe-Ot-Bu (123 mg, 0.48 mmol) and propylene oxide (28 mg, 0.48 mmol) were added. After 48 h at 30-40 °C the reaction was complete (TCL control). The solvent was evaporated in vacuo and the residue was purified by column chromatography (eluent: CHCl3-MeOH 10:1, Rf = 0.36). Yield: 56% (124 mg) 11b; mp 129 °C; [α]D = -4 (c 0.75, MeOH). 1H NMR (DMSO-d 6): δ = 1.30 (s, 3 H, CH3), 1.34 (s, 9 H, C(CH3)3), 1.58 (m, 1 H, CH2), 1.79 (m, 1 H, CH2), 2.77 (m, 1 H, NCH2), 3.02 (m, 3 H, NCH2, CH2-Phe), 4.20 (t, 3 J = 6.8 Hz, 1 H, CH), 4.26 (d, 3 J = 6.8 Hz, 2 H, CH2-Fmoc), 4.41 (dt, 3 J = 7.2 Hz, 3 J = 7.1 Hz, 1 H, CH-Phe), 5.46 (br s, 1 H, OH), 7.07 (br t, 3 J = 5.0 Hz, 1 H, NH), 7.14-7.29 (m, 5 H, H-Ar), 7.64 (d, 3 J = 9.0 Hz, 1 H, NH), 7.32-7.88 (m, 8 H, H-Fmoc). 13C NMR (DMSO-d 6): δ = 27.44, 27.48, 35.88, 36.69, 39.67, 46.64, 53.18, 65.12, 79.68, 80.84, 119.98, 125.03, 126.36, 126.91, 127.47, 128.03, 129.08, 136.92, 140.60. 143.80, 155.77, 170.12, 174.82. MS (ESI) m/z = [M + H]+ 559.28079, calcd.: 559.28026; [M + Na]+ 581.26252, calcd: 581.26221; [2 M + Na]+ 1139.53588, calcd: 1139.53520.

26

[(2S)-4-(9-Fluorenylmethyl)oxycarbonylamino-2-hydroxy-2-methyl-butyryl]-azaglycine methyl ester ( 12b): To a stirred solution of 9c (200 mg, 0.40 mmol) in DMF (2 mL) NH2NHCO2Me (36 mg, 0.40 mmol) was added. After 24 h the reaction was complete (TLC control). DMF was evaporated in vacuo and the residue was purified by column chromatography (eluent: CHCl3-MeOH 10:1, Rf = 0.38) and then lyophilized. Yield: 87% (147 mg) 12b; mp 75-77 °C; [α]D = -3 (c 1.0, MeOH). 1H NMR (DMSO-d 6): δ = 1.26 (s, 3 H, CH3), 1.63 (m, 1 H, CH2), 1.84 (m, 1 H, CH2), 2.99 (m, 1 H, NCH2), 3.19 (m, 1 H, NCH2), 3.57 (s, 3 H, OCH3), 4.21 (m, 3 H, CH, CH2-Fmoc), 5.48 (br s, 1 H, OH), 5.54 (br s, 1 H, OH), 7.16 (br s, 1 H, NH), 7.32-7.87 (m, 8 H, Aryl-H Fmoc), 8.95 (br s, 1 H, NH), 9.46 (br s, 1 H, NH). 13C NMR (DMSO-d 6): δ = 26.42, 35.80, 40.12, 46.64, 51.68, 65.17, 73.25, 119.90, 125.08, 126.94, 127.48, 140.60, 143.83, 155.85, 156.47, 174.77. MS (ESI) m/z = [M + Na]+ 450.16395, calcd 450.16356; [2 M + Na]+ 877.33696, calcd: 877.33789.