Synlett 2003(12): 1883-1885  
DOI: 10.1055/s-2003-41474
LETTER
© Georg Thieme Verlag Stuttgart · New York

Bis(oxazolinyl)phenylrhodium(III) Aqua Complex: Efficiency in Enantioselective Addition of Methallyltributyltin to Aldehydes under Aerobic Conditions

Yukihiro Motoyama*, Hisao Nishiyama
School of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
Fax: +81(92)5837819; e-Mail: motoyama@cm.kyushu-u.ac.jp;
Further Information

Publication History

Received 27 July 2003
Publication Date:
19 September 2003 (online)

Abstract

A simple and general protocol is described for the enantio­selective addition of methallyltributyltin to aldehydes catalyz­ed by chiral (Phebox)RhCl2(H2O) complexes 1 [Phebox = 2,6-bis(oxazolinyl)phenyl]. The reaction can be performed even unde­r aerobic conditions to afford the corresponding optically activ­e homoallyl­ic alcohols in good yields with high enantio­selectivities (90-99% ee).

    References

  • 1a

    New address: Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580, Japan.

  • 1b

    New address: Department of Applied Chemistry, Graduate School of Engeering, Nagoya University, Chikusa, Nagoya 464-8603, Japan.

  • 2a Moulton CJ. Shaw BL. J. Chem. Soc., Dalton Trans.  1976,  1020 
  • 2b Reviews: Rietveld MHP. Grove DM. van Koten G. New J. Chem.  1997,  21:  751 
  • 2c Albrecht M. van Koten G. Angew. Chem. Int. Ed.  2001,  40:  3750 
  • 2d van der Boom ME. Milstein D. Chem. Rev.  2003,  103:  1759 
  • 2e Singleton JT. Tetrahedron  2003,  59:  1837 
  • 3a Motoyama Y. Makihara N. Mikami Y. Aoki K. Nishiyama H. Chem. Lett.  1997,  951 
  • 3b Motoyama Y. Narusawa H. Nishiyama H. Chem. Commun.  1999,  131 
  • 3c Motoyama Y. Okano M. Narusawa H. Makihara N. Aoki K. Nishiyama H. Organometallics  2001,  20:  1580 
  • 3d Motoyama Y. Koga Y. Nishiyama H. Tetrahedron  2001,  57:  853 
  • 3e Motoyama Y. Shimozono K. Aoki K. Nishiyama H. Organometallics  2002,  21:  1684 
  • 3f Motoyama Y. Koga Y. Kobayashi K. Aoki K. Nishiyama H. Chem.-Eur. J.  2002,  8:  2968 
  • 3g Motoyama Y. Kawakami H. Shimozono K. Aoki K. Nishiyama H. Organometallics  2002,  21:  3408 
  • 3h Also see: Motoyama Y. Nishiyama H. In Latest Frontiers of Organic Synthesis   Kobayashi Y. Research Signpost; India: 2002.  p.1 
  • For examples of chiral Lewis acid-catalyzed reactions in water-containing solvents, see:
  • 5a Diels-Alder reaction: Mikami K. Kotera O. Motoyama Y. Sakaguchi H. Synlett  1995,  975 
  • 5b Also see: Otto S. Engberts JBFN. J. Am. Chem. Soc.  1999,  121:  6798 
  • 5c Aldol reaction: Kobayashi S. Nagayama S. Busujima T. Tetrahedron  1999,  55:  8739 
  • 5d Also see: Nagayama S. Kobayashi S. J. Am. Chem. Soc.  2000,  122:  11531 
  • 5e Also see: Kobayashi S. Hamada T. Nagayama S. Manabe K. Org. Lett.  2001,  3:  165 
  • 5f Also see: Yamashita Y. Ishitani H. Shimizu H. Kobayashi S. J. Am. Chem. Soc.  2002,  124:  3292 
  • 5g Allylation of aldehydes: Loh T.-P. Zhou J.-R. Tetrahedron Lett.  2000,  41:  5261 
  • 5h Mannich-type reaction: Kobayashi S. Hamada T. Manabe K. J. Am. Chem. Soc.  2002,  124:  5640 
  • 5i Also see: Li C.-J. Chan T.-H. Organic Reactions in Aqueous Media   John Wiley & Sons; New York: 1997. 
  • 5j Organic Synthesis in Water   Grieco PA. Blackie Academic and Professional; London: 1998. 
  • 5k Kobayashi S. In Lanthanides: Chemistry and Use in Organic Synthesis   Kobayashi S. Springer; Berlin: 1999.  p.63 
  • 5l Kobayashi S. Manabe K. Acc. Chem. Res.  2002,  35:  209 
  • 8a Hoffmann RW. Herold T. Chem. Ber.  1981,  114:  375 
  • 8b Minowa N. Mukaiyama T. Bull. Chem. Soc. Jpn.  1987,  60:  3697 
  • 8c Ishihara K. Mouri M. Gao Q. Maruyama T. Furuta K. Yamamoto H. J. Am. Chem. Soc.  1993,  115:  11490 
  • Other examples of the recoverable chiral complexes are as follows.:
  • 9a Ru complex for the cyclopropanation: Nishiyama H. Itoh Y. Matsumoto H. Park S.-B. Itoh K. J. Am. Chem. Soc.  1994,  116:  2223 
  • 9b Ru complex for the oxidation of sulfides: Schenk WA. Dürr M. Chem.-Eur. J.  1997,  3:  713 
  • 9c Ru complex for the Diels-Alder reaction: Kündig EP. Saudan CM. Bernardinelli G. Angew. Chem. Int. Ed.  1999,  38:  1220 
  • 9d Ni complex for the 1,3-dipolar cycloaddition: Kanemasa S. Oderaotoshi Y. Sakaguchi S. Yamamoto H. Tanaka J. Wada E. Curran DP. J. Am. Chem. Soc.  1998,  120:  3074 
  • 10 Very recently, Portnoy reported the solid-supported Phebox-Rh complexes and its application as heterogeneous catalysts for the allylation of aldehydes, see: Weissberg A. Portnoy M. Chem. Commun.  2003,  1538 
4

In the presence of MS 4 Å, this catalytic reaction was slightly accelerated but the enantioselectivity was not changed, see ref. [3b]

6

General Procedure for the Catalytic Enantioselective Addition of Methallyltributyltin 3 to Aldehydes Catalyzed by i -Pr-1. To a suspension of MS 4A (125 mg) in CH2Cl2 (1 mL) were added (i-Pr-Phebox)RhCl2(H2O) complex i-Pr-1 (6.1 mg, 0.0125 mmol, 5 mol%), aldehyde (0.25 mmol) and methallyltributyltin (0.375 mmol, 1.5 equiv) at 25 °C. After stirring the reaction mixture for 12 h at that temperature, the reaction mixture was concentrated under reduced pressure. The residue was dissolved 5 mL of Et2O, and this solution was treated with a mixture of 1 N HCl (5 mL) and solid KF (ca. 0.5 g) at r.t. for 30 min. The resultant precipitate was filtered off, the filtrate was dried over MgSO4 and concentrated under reduced pressure. Purification by silica gel chromatography (hexane-Et2O = 3:1, then EtOAc as eluent for recovering i-Pr-1) gave homoallylic alcohol, the enantioselectivity was determined by chiral HPLC analysis. 5a: Daicel CHIRALCEL OD-H, UV Detector 254 nm, hexane-i-PrOH = 20:1, flow rate 0.5 mL/min. t R = 13.1 min (S), 14.6 min (R); 5b: Daicel CHIRALCEL OJ, UV Detector 254 nm, hexane-i-PrOH = 30:1, flow rate 0.5 mL/min. t R = 16.9 min (S), 19.1 min (R); 5c: Daicel CHIRALCEL OD-H, UV Detector 230 nm, hexane-i-PrOH = 30:1, flow rate 0.5 mL/min. t R = 20.9 min (R), 22.9 min (S); 5d: Daicel CHIRALCEL OD-H, UV Detector 230 nm, hexane-i-PrOH = 40:1, flow rate 0.5 mL/min. t R = 18.1 min (S), 19.1 min (R); 5e: Daicel CHIRALCEL OD-H, UV Detector 254 nm, hexane-i-PrOH = 20:1, flow rate 0.5 mL/min. t R = 13.5 min (S), 19.2 min (R); 5f: Daicel CHIRALCEL OD-H, UV Detector 254 nm, hexane-i-PrOH = 20:1, flow rate 1.0 mL/min. t R = 10.9 min (R), 20.8 min (S); 5g: The %ee was determined after converting to the benzoate ester. Daicel CHIRALPAK AD, UV Detector 254 nm, hexane-i-PrOH = 200:1, flow rate 0.5 mL/min. t R = 9.4 min (R), 11.2 min (S).

7

5a: [α]D 23 -48.7 (c 0.63, Et2O); lit. [8a] [α]D 20 -19.70° (c 9.90, Et2O) for 40% ee (S); 5b: [α]D 22 -44.5 (c 0.77, benzene); lit. [8b] [α]D 21 -40.4° (c 3.15, benzene) for 88% ee (S); 5c: [α]D 23 -67.9 (c 0.99, CHCl3); 5d: [α]D 21 -49.2° (c 0.61, CHCl3); 5e: [α]D 22 +15.8° (c 0.85, CHCl3); lit. [8b] [α]D 23 +16.6 (c 2.66, CHCl3) for 67% ee (R); 5f: [α]D 22 -19.4 (c 0.26, benzene); lit. [8c] [α]D +19.0 (c 1.44, benzene) for 84% ee (R); 5g: [α]D 20 -3.30 (c 0.79, benzene); lit. [8c] [α]D +4.04 (c 1.93, benzene) for 77% ee (R).