Abstract
An efficient enantioselective total synthesis of (R )-1-isopropenyl-6-methoxy-7-methyl-1,2,3,4-tetrahydronaphthalene,the dehydro-analog
of the cytotoxic norsesquiterpene (R )-7-demethyl-2-methoxycalamenene, wasachieved in seven steps starting from 6-methoxytetralone.
The synthesisexploits the specific reactivity and stereochemistry of planar chiral
η6 -arene-Cr(CO)3 complexes.In a key step, a Cr(CO)3 -complexed benzylic anion, regioselectively generatedby means of electron- transfer-driven
benzylic umpolung, is diastereoselectivelyalkylated with acetyl chloride.
Key words
arene complexes - asymmetric synthesis - chromium - electron-transfer - natural products
References
<A NAME="RT05103SS-1">1 </A>
Bohlmann F.
Zdero C.
Robinson H.
King RM.
Phytochemistry
1979,
18:
1675
<A NAME="RT05103SS-2A">2a </A>
Ambade NS.
Desai DG.
Dhanaji G.
Mane RB.
Indian J. Chem., Sect. B
1981,
20B:
917
<A NAME="RT05103SS-2B">2b </A>
Bohlmann F.
Giencke W.
Tetrahedron
1983,
39:
443
<A NAME="RT05103SS-2C">2c </A>
Kadam AJ.
Baraskar UK.
Mane RB.
Indian J. Chem., Sect. B
2000,
39:
822
<A NAME="RT05103SS-3A">3a </A>
Tietze LF.
Raschke T.
Synlett
1995,
597
<A NAME="RT05103SS-3B">3b </A>
Tietze LF.
Raschke T.
LiebigsAnn.
1996,
1981
<A NAME="RT05103SS-3C">3c </A>
Noltemeyer M.
Raschke T.
Tietze LF.
Acta Crystallogr.,Sect.C
1996,
C52:
2256
<A NAME="RT05103SS-4A">4a </A>
Tietze LF.
Schimpf R.
Angew.Chem., Int. Ed. Engl.
1994,
33:
1089
<A NAME="RT05103SS-4B">4b </A>
Tietze LF.
Modi A.
Eur. J. Org. Chem.
2000,
1959
Recent work from this laboratory:
<A NAME="RT05103SS-5A">5a </A>
Dehmel F.
Lex J.
Schmalz H.-G.
Org.Lett.
2002,
4:
3915
<A NAME="RT05103SS-5B">5b </A>
Schwarz O.
Brun R.
Bats JW.
Schmalz H.-G.
Tetrahedron Lett.
2002,
43:
1009
<A NAME="RT05103SS-5C">5c </A>
Dehmel F.
Schmalz H.-G.
Org. Lett.
2001,
3:
3579
<A NAME="RT05103SS-5D">5d </A>
Hörstermann DP.
Schmalz H.-G.
Kociok-Köhn G.
Tetrahedron
1999,
55:
6905
Recent overviews:
<A NAME="RT05103SS-6A">6a </A>
Schmalz H.-G.
Siegel S. In
TransitionMetals for Organic Synthesis
Vol. 1:
Beller M.
Bolm C.
Wiley-VCH;
Weinheim:
1998.
p.550
<A NAME="RT05103SS-6B">6b </A>
Hegedus LS.
Transition Metals inthe Synthesis of Complex Organic Molecules
2nd ed.:
UniversityScience Books;
Sausalito CA:
1999.
Chap.10.
<A NAME="RT05103SS-6C">6c </A>
Kündig EP.
Pache SH. In
Science of Synthesis (Houben-Weyl)
Vol.2:
Imamoto T.
ThiemeVerlag;
Stuttgart:
2003.
p.155
<A NAME="RT05103SS-7">7 </A>
Schmalz H.-G.
de Koning CB.
Bernicke D.
Siegel S.
Pfletschinger A.
Angew.Chem. Int. Ed.
1999,
38:
1620
For reviews on the use of Cr(CO)3 -stabilizedbenzylic anions in synthesis, see:
<A NAME="RT05103SS-8A">8a </A>
Davies SG.
Coote SJ.
Goodfellow CL. In
Advancesin Metal-Organic Chemistry
Vol. 2:
Liebeskind LS.
JAI Press;
London:
1989.
p.1-57
<A NAME="RT05103SS-8B">8b </A>
Davies SG.
McCarthy TD. In
Comprehensive Organometallic Chemistry II
Vol.12:
Abel EW.
Stone FGA.
Wilkinson G.
Hegedus LS.
Pergamon;
New York:
1995.
p.979-1015
This benzylic anion is best representedby a resonance structure where the charge is
mainly delocalizedto the metal fragment (see Scheme 3). For a discussion of the electronic
structureof Cr(CO)3 complexed benzylic anions, radicals and anions,see:
<A NAME="RT05103SS-9A">9a </A>
Pfletschinger A.
Dargel TK.
Schmalz H.-G.
Koch W.
Chem. Eur. J.
1999,
5:
537
<A NAME="RT05103SS-9B">9b </A> See also:
Merlic CA.
Walsh JC.
Tantillo DJ.
Houk KN.
J. Am. Chem. Soc.
1999,
121:
3596
<A NAME="RT05103SS-10">10 </A> Even the more acidic arylic hydrogens ortho to the methoxy group could possiblybe protected by silylation, the benzylic deprotonation
would preferentiallytake place at the methylene group meta tothe methoxy substituent because the acidity in para positionis lower for electronic and stereoelectronic reasons; see:
Volk T.
Bernicke D.
Bats JW.
Schmalz H.-G.
Eur.J. Inorg. Chem.
1998,
1883 ;and references cited therein
<A NAME="RT05103SS-11A">11a </A>
Corey EJ.
Helal CJ.
Angew.Chem. Int. Ed.
1998,
37:
1987 ;and references cited therein
<A NAME="RT05103SS-11B">11b </A>
Corey EJ.
Helal CJ.
TetrahedronLett.
1995,
36:
9153
<A NAME="RT05103SS-12">12 </A>
The enantiomeric excess was determinedby HPLC on a Daicel Chiralcel OJ column (hexane-i -PrOH) using a racemic sample as reference.
<A NAME="RT05103SS-13">13 </A>
Schmalz H.-G.
Millies B.
Bats JW.
Dürner G.
Angew. Chem., Int.Ed. Engl.
1992,
31:
631
<A NAME="RT05103SS-14">14 </A>
Johnstone RAW.
Rose ME.
Tetrahedron
1979,
35:
2169
<A NAME="RT05103SS-15A">15a </A>
Freeman PK.
Hutchinson L.
J.Org. Chem.
1980,
45:
1924
<A NAME="RT05103SS-15B">15b </A> For the use of LiDBB inarene-Cr(CO)3 chemistry, see:
Siwek MJ.
Green JR.
Synlett
1996,
560
<A NAME="RT05103SS-16A">16a </A>
Lombardo L.
Tetrahedron Lett.
1982,
23:
4293
<A NAME="RT05103SS-16B">16b </A>
Lombardo L.
Org.Synth.
1987,
65:
81
<A NAME="RT05103SS-17">17 </A>
The crystallographic data (excludingstructure factors) have been deposited with the
Cambridge CrystallographicData Centre as supplementary publication no. CCDC 154574.
Copiesof the data may be obtained from: The Director of the CambridgeCrystallographic
Centre, 12 Union Road, GB-Cambridge CB2 1EZ, UK;Fax: (+44)1223336033; e-mail: deposit@ccdc.cam.ac.uk.
<A NAME="RT05103SS-18">18 </A>
Seebach D.
Sting AR.
Hoffmann M.
Angew.Chem., Int. Ed. Engl
1996,
35:
2708
For previous syntheses of calamenenesusing arene chromium chemistry, see:
<A NAME="RT05103SS-19A">19a </A>
Schmalz H.-G.
Arnold M.
Hollander J.
Bats JW.
Angew. Chem., Int. Ed.Engl.
1994,
33:
109
<A NAME="RT05103SS-19B">19b </A>
Schmalz H.-G.
Hollander J.
Arnold M.
Dürner G.
Tetrahedron Lett.
1993,
34:
6259
<A NAME="RT05103SS-19C">19c </A>
Uemura M. In
Advances in Metal-Organic Chemistry
Vol.2:
Liebeskind LS.
JAIPress;
London:
1991.
p.195-245