References
<A NAME="RU10803ST-1A">1a</A>
Weinreb SM. In ComprehensiveOrganic Synthesis
Vol. 5:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
p.401
<A NAME="RU10803ST-1B">1b</A>
Boger DL.
Weinreb SM.
HeteroDiels-Alder Methodology in Organic Synthesis
Academic;
San Diego:
1987.
Chap.2.
<A NAME="RU10803ST-1C">1c</A>
Boger DL.
Weinreb SM.
HeteroDiels-Alder Methodology in Organic Synthesis
Academic;
SanDiego:
1987.
Chap. 9.
<A NAME="RU10803ST-1D">1d</A>
Qiang LG.
Baine NH.
J.Org. Chem.
1988,
53:
4218
<A NAME="RU10803ST-2A">2a</A>
Povarov LS.
Russ. Chem. Rev.
1967,
36:
656
<A NAME="RU10803ST-2B">2b</A>
Kametani T.
Takeda H.
Suzuki Y.
Honda T.
Synth. Commun.
1985,
15:
499
<A NAME="RU10803ST-2C">2c</A>
Kobayashi S.
Ishitani H.
Nagayama S.
Synthesis
1995,
1195
<A NAME="RU10803ST-2D">2d</A>
Yamanaka M.
Nishida A.
Nakagana M.
Org.Lett.
2000,
2:
159
<A NAME="RU10803ST-2E">2e</A>
Hattori K.
Yamamoto H.
Tetrahedron
1993,
49:
1749
<A NAME="RU10803ST-2F">2f</A>
Grieco PA.
Bahsas A.
TetrahedronLett.
1988,
29:
5855
<A NAME="RU10803ST-2G">2g</A>
Bortototti B.
Leardini R.
Nanni D.
Zanardi G.
Tetrahedron
1993,
49:
10157
<A NAME="RU10803ST-3A">3a</A>
Nagarajan R.
Chitra S.
Perumal PT.
Tetrahedron
2001,
57:
3419
<A NAME="RU10803ST-3B">3b</A>
Sunderanrajan G.
Prabagaran N.
Varghese B.
Org.Lett.
2001,
3:
1973
<A NAME="RU10803ST-3C">3c</A>
Collin J.
Jaber N.
Lannou MI.
TetrahedronLett.
2001,
42:
7405
<A NAME="RU10803ST-3D">3d</A>
Xia C.
Heng L.
Ma D.
TetrahedronLett.
2002,
43:
9405
<A NAME="RU10803ST-4">4</A>
Ma Y.
Qian C.
Xie M.
Sun J.
J.Org. Chem.
1999,
64:
6462
<A NAME="RU10803ST-5A">5a</A>
Bauld NL.
Tetrahedron
1989,
45:
5307
<A NAME="RU10803ST-5B">5b</A>
Bauld NL.
Bellville DJ.
Harirchian B.
Lorenz KT.
Pabon PA.
Reynolds DW.
Wirth DD.
Chiou H.-S.
Marsh BK.
Acc.Chem. Res.
1987,
20:
371
<A NAME="RU10803ST-5C">5c</A>
Schmittel M.
Burghart A.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2550
<A NAME="RU10803ST-6A">6a</A>
Behforouz M.
Ahmadian M.
Tetrahedron
2000,
56:
5259
<A NAME="RU10803ST-6B">6b</A>
Peglow T.
Blechert S.
Steckhan E.
Chem. Commun.
1999,
433
<A NAME="RU10803ST-6C">6c</A>
Wiest O.
Steckhan E.
Angew. Chem., Int. Ed. Engl.
1993,
32:
901
<A NAME="RU10803ST-6D">6d</A>
Gürtler CF.
Blechert S.
Steckhan E.
Angew. Chem., Int. Ed. Engl.
1995,
34:
1900
<A NAME="RU10803ST-7A">7a</A>
Zhang W.
Jia X.
Yang L.
Liu Z.-L.
TetrahedronLett.
2002,
43:
9433
<A NAME="RU10803ST-7B">7b</A>
Zhang J.
Jin M.-Z.
Zhang W.
Yang L.
Liu Z.-L.
TetrahedronLett.
2002,
43:
9687
<A NAME="RU10803ST-7C">7c</A>
Mao YZ.
Jin MZ.
Liu Z.-L.
Wu LM.
Org. Lett.
2000,
2:
741
<A NAME="RU10803ST-7D">7d</A>
Jin M.-Z.
Zhang D.
Yang L.
Liu Y.-C.
Liu Z.-L.
TetrahedronLett.
2000,
41:
7357
<A NAME="RU10803ST-7E">7e</A>
Jin M.-Z.
Yang L.
Wu L.-M.
Liu Y.-C.
Liu Z.-L.
Chem.Commun.
1998,
2451
<A NAME="RU10803ST-8">8</A>
RepresentativeSpectral Data of the Products. syn-3b: Yellow needles, mp 174-176 °C(uncor.). HR-ESI-MS: 379.1211 (calcd for C22H19N2O2Cl + H+:379.1208). 1H NMR (400 MHz, CDCl3): δ = 1.63(s, 3 H, CH3), 1.98 (dd, J = 2.7,13.4 Hz, 1 H, H-3e), 2.24 (dd, J = 11.4,13.4 Hz, 1 H, H-3a), 4.74 (dd, J = 2.7,11.4Hz, 1 H, H-2), 6.61 (d, J = 8.5Hz, 1 H, H-8), 6.67 (d, J = 2.3Hz, 1 H, H-5), 7.0 (dd, J = 2.3,8.5 Hz, 1 H, H-7), 7.22-7.31 (m, 5 H, Ph), 7.62 (d, 2 H, J = 8.7 Hz,Ar), 8.19 (d, 2 H, J = 9.19,Ar). 13C NMR (100.08 MHz, CDCl3): δ = 29.6(CH3), 42.3 (C-4), 48.9 (CH2), 53.8 (CH),116.5 (C-8), 123.8 (C-6), 126.4 (C-5), 127.1 (2 C, Ph), 127.6 (1C, Ph),
128.0 (2 C, Ph), 128.3 (C-7), 129.3 (2 C, Ph), 129.7 (2C, Ph), 132.0 (1 C, Ph), 142.0
(1 C, Ph), 147.5 (1 C, Ph), 148.4(C-10), 150.6 (C-9). anti
-3b:Yellow needles, mp 152-153 °C (uncor.).HR-ESI-MS: 379.1210 (calcd. for C22H19N2O2Cl + H+:379.1208). 1H NMR (400 MHz, CDCl3): δ = 1.76(s, 3 H, CH3), 2.08 (dd, J = 12.0,13.1 Hz, 1 H, H-3a), 2.25 (dd, J = 3.0, 13.1, 1 H, H-3e),4.13 (dd, J = 3.0,12.0 Hz, 1 H, H-2), 6.62 (d, J = 8.5 Hz,H-8), 6.81 (dd, J = 7.0,7.0 Hz, H-6), 7.18 (d, J = 2.2Hz, 1 H, H-5), 7.19-7.35 (m, 5 H, Ph), 7.46 (d, J = 7.2 Hz,2 H, Ar), 8.16 (d, J = 7.2Hz, 2 H, Ar). 13C NMR (100.08 MHz, CDCl3): δ = 29.3(CH3), 41.7 (C-4), 47.5 (CH2), 53.9 (CH), 116.1(C-8), 122.4 (C-6), 123.7 (C-5), 126.3 (2 C, Ph), 126.6 (2 C, Ph),127.5
(2 C, Ph), 127.8 (2 C, Ph), 128.1 (C-7), 128.5 (2 C, Ph),142.1 (1 C, Ph), 147.5 (1
C, Ph), 144.6 (C-10), 150.4 (C-9). Thecoupling constants of H-2 suggest its axial
conformation in both syn- and anti-3b. The significant low-field shift ofH-3e and up-field shift of H-2 of anti-3b in comparison with those of syn-3b suggestsan axial 4-phenyl group in anti-3b while an equatorial 4-phenyl group in syn-3b. Thestereochemistry was confirmed by their NOESY spectra which showa clear cross
peak between the 4-methyl and H-2 in syn-3b, while no such correlation in anti-3b.
<A NAME="RU10803ST-9">9</A>
Weinberg NL.
Weinberg HR.
Chem. Rev.
1968,
68:
449
<A NAME="RU10803ST-10">10</A>
The oxidation peak potential was determinedvs. SCE by cyclic voltammetry in MeCN using
a glassy carbon electrode.
<A NAME="RU10803ST-11">11</A>
The structures of the products wereidentified by comparing their 1H and 13CNMR data with those reported in the literature. See ref.
[4]