Synlett 2003(9): 1279-1282
DOI: 10.1055/s-2003-40347
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A Highly Efficient and Stereoselective Synthesis of Polyhydroxylated Pyrrolidines via Regioselective Asymmetric Aminohydroxylation (RAA) and Intramolecular Amidomercuration Reactions

Satwinder Singh, Dinesh Chikkanna, Om V. Singh, Hyunsoo Han*
Department of Chemistry, The University of Texas at San Antonio, 6900 N. Loop 1604 West, San Antonio, TX 78249, USA
Fax: +1(210)4584958; e-Mail: hhan@utsa.edu;
Weitere Informationen

Publikationsverlauf

Received 18 April 2003
Publikationsdatum:
30. Juni 2003 (online)

Abstract

A new synthetic strategy, which allows a complete stereo­chemical control of all four chiral centers of two important polyhydroxylated pyrrolidines 8 and 9, is described. The cornerstone of the present strategy is a successful implementation of the regioselective asymmetric aminohydroxylation (RAA) reaction of the designed achiral olefin 1 and the intramolecular stereoselective amidomercuration reaction of the δ-alkenylamide 4, which were used for the introduction of the vicinal amino alcohol functionality and for the construction of the five membered ring in the targets respectively.

    References

  • 1a Winchester B. Fleet GWJ. Glycobiology  1992,  2:  199 
  • 1b Kennedy JF. White CA. Bioactive Carbohydrates in Chemistry, Biochemistry, and Biology   Halsted Press; New York: 1983. 
  • 2a Rhinehart BL. Robinson KM. Payne AJ. Wheatly ME. Fisher JL. Liu PS. Cheng W. Life Sci.  1987,  41:  2325 
  • 2b Anzeveno PB. Creemer LJ. Daniel JK. King CHR. Liu PS. J. Org. Chem.  1989,  54:  2539 
  • 2c Johnson PS. Lebovitz HE. Coniff RF. Simonson DC. Raskin P. Munera CL. J. Clin. Endocrinol. Metab.  1998,  83:  1515 
  • 3 Ostrander GK. Scribner NK. Rohrschneider LR. Cancer Res.  1988,  48:  1091 
  • 4 Bitonti AJ, Sjoersma A, and McCann PP. inventors; Eur. Patent App., EP  423728. 
  • 5a Fleet GWJ. Karpas A. Dwek RA. Fellows LE. Tyms AS. Peturrson S. Namgoong SK. Ramsden NG. Smith PW. Son JC. Wilson F. Witty DR. Jacob GS. Rademacher TW. FEBS Lett.  1988,  237:  128 
  • 5b Gruters RA. Neefjes JJ. Tersmette M. de Goede REY. Tulp A. Huisman HG. Miedema F. Ploegh HL. Nature (London)  1987,  330:  74 
  • 6a Sinnott ML. Chem. Rev.  1990,  90:  1171 
  • 6b Heightman TD. Vasella AT. Angew. Chem. Int. Ed.  1999,  38:  750 
  • 6c Zechel D. Withers SG. Acc. Chem. Res.  2000,  33:  11 
  • 7a Watson AA. Fleet GWJ. Asano N. Molyneux RJ. Nash RJ. Phytochemistry  2001,  56:  265 
  • 7b Asano N. Kuroi H. Ikeda K. Kizu H. Kameda Y. Kato A. Adachi I. Watson AA. Nash RJ. Fleet GWJ. Tetrahedron: Asymmetry  2000,  11:  1 
  • 7c Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond   Stutz AE. Wiley-VCH; Weinheim: 1999. 
  • 7d Carbohydrate Mimetics. Concepts and Methods   Chapleur Y. Wiley-VCH; Weinheim: 1998. 
  • 7e Winchester B. Fleet GWJ. Glycobiology  1992,  2:  199 
  • 7f Ganem B. Acc. Chem. Res.  1996,  29:  340 
  • 7g Bols M. Acc. Chem. Res.  1998,  31:  1 
  • 7h Sears P. Wong C.-H. Angew. Chem. Int. Ed.  1999,  38:  2301 
  • 8a Behr J.-B. Erard A. Guillerm G. Eur. J. Org. Chem.  2002,  1256 
  • 8b Denmark SE. Cottell JJ. J. Org. Chem.  2001,  66:  4276 
  • 8c White JD. Hrnciar P. J. Org. Chem.  2000,  65:  9129 
  • 8d Denmark SE. Hurd AR. J. Org. Chem.  2000,  65:  2875 
  • 8e Denmark SE. Herbert B. J. Org. Chem.  2000,  65:  2887 
  • 9a Toyao A. Tamura O. Takagi H. Ishibashi H. Synlett  2003,  35 
  • 9b Yamashita T. Yasuda K. Kizu H. Kameda Y. Watson AA. Nash RJ. Fleet GWH. Asano N. J. Nat. Prod.  2002,  65:  1875 
  • 10a Shi M. Satoh Y. Makihara T. Masaki Y. Tetrahedron: Asymmetry  1995,  6:  2109 
  • 10b Masaki Y. Oda H. Kazuta K. Usai A. Itoh A. Xu F. Tetrahedron Lett.  1992,  33:  5089 
  • 10c Gouverneur V. Ghosez L. Tetrahedron Lett.  1991,  32:  5349 
  • 10d Gouverneur V. Ghosez L. Tetrahedron: Asymmetry  1990,  1:  363 
  • 10e Ikegami S. Uchiyama H. Hayama T. Katsuki T. Yamaguchi M. Tetrahedron  1988,  44:  5333 
  • 10f For a review of C2-symmetric catalysts and ligands, see: Whitesell JK. Chem. Rev.  1989,  89:  1581 
  • 11 For a review for the formation of pyrrolidine rings, see: Pichon M. Figadere B. Tetrahedron: Asymmetry  1996,  7:  927 
  • For more recent literatures for the synthesis and biological activity of I, see:
  • 12a Donohoe TJ. Headley CE. Cousins RPC. Cowley A. Org. Lett.  2003,  7:  999 
  • 12b Dondoni A. Giovannini PP. Perrone D. J. Org. Chem.  2002,  67:  7203 
  • 12c Cubero I. Plaza Lopez-Espinosa MT. Robles Diaz R. Franco Montalban F. Carbohydr. Res.  2001,  330:  401 
  • 12d Saotome C. Kanie Y. Kanie O. Wong C.-H. Bioorg. Med. Chem.  2000,  8:  2249 
  • 12e Colobert F. Tito A. Khiar N. Denni D. Medina MA. Martin-Lomas M. Ruano JG. Solladie G. J. Org. Chem.  1998,  63:  8918 
  • 12f Takayama S. Martin R. Wu J. Laslo K. Siuzdak G. Wong C.-H. J. Am. Chem. Soc.  1997,  119:  8146 
  • 12g Huwe CM. Blechert S. Synthesis  1997,  61 
  • 12h McCort I. Dureault A. Depezay J.-C. Tetrahedron Lett.  1996,  37:  7717 
  • 12i Asano N. Oseki K. Kizu H. Matsui K. J. Med. Chem.  1994,  37:  3701 
  • 12j Zou W. Szarek WA. Carbohydr. Res.  1993,  242:  311 
  • 12k Masaki Y. Oda H. Kazuta K. Usai A. Itoh A. Xu F. Tetrahedron Lett.  1992,  33:  5089 
  • 12l Kajimoto T. Chen L. Liu K.-C. Wong C.-H. J. Am. Chem. Soc.  1991,  113:  6678 
  • 12m Liu K.-C. Kajimoto T. Chen L. Wong C.-H. J. Org. Chem.  1991,  56:  6280 
  • 12n Huang RR. Straub JA. Whitesides GM. J. Org. Chem.  1991,  56:  3849 
  • 12o Dureault A. Portal M. Depezay JC. Synlett  1991,  225 
  • 12p Reitz AB. Baxter EW. Tetrahedron Lett.  1990,  31:  6777 
  • 12q Shing TKM. Tetrahedron  1988,  44:  7261 
  • 12r Fleet GWJ. Smith PW. Tetrahedron  1987,  43:  971 
  • 12s Card PJ. Hitz WD. J. Org. Chem.  1985,  50:  891 
  • For more recent literatures for the synthesis and biological activity of II, see:
  • 13a Sifferlen T. Defoin A. Streith J. Nouen DL. Tarnus C. Dosbaa I. Foglietti M.-J. Tetrahedron  2000,  56:  971 
  • 13b Qiao L. Murray BW. Shimazaki M. Schultz J. Wong C.-H. J. Am. Chem. Soc.  1996,  118:  7653 
  • 13c Wang Y.-F. Dumas DP. Wong C.-H. Tetrahedron Lett.  1993,  34:  403 
  • 13d Dumas DP. Kajimoto T. Liu K.-C. Wong C.-H. Berlowitz DB. Danishefsky SJ. Bioorg. Med. Chem. Lett.  1992,  2:  33 
  • 13e Wong C.-H. Dumas DP. Ishikawa Y. Koseki K. Danishefsky SJ. Weston RW. Lowe JB. J. Am. Chem. Soc.  1992,  114:  7321 
  • 13f Ishikawa Y. Lin YC. Dumas DP. Shen G.-J. Garcia-Junceda E. Williams MA. Bayer R. Ketcham C. Walker LE. Paulson JC. Wong C.-H. J. Am. Chem. Soc.  1992,  114:  9283 
  • 13g Liu K.-C. Kajimoto T. Cheng L. Zhong Z. Ichikawa Y. Wong C.-H. J. Org. Chem.  1991,  56:  6280 
  • 14a Han H. Cho CW. Janda KD. Chem. Eur. J.  1999,  5:  1565 
  • 14b Han H. Yoon J. Janda KD. J. Org. Chem.  1998,  63:  2045 
  • 14c Singh OV. Han H. Tetrahedron Lett.  2003,  44:  2387 
  • 14d Han H. Yang H. Tetrahedron Lett.  2003,  44:  1567 
  • 14e For other similar approaches, see: Morgan AJ. Masse CE. Panek JS. Org. Lett.  1999,  1:  1949 
  • 14f Also see: Chuang C.-C. Vassar V. Ma Z. Geney R. Ojima I. Chirality  2002,  14:  151 
  • 15a Takahata H. Takehara H. Ohkubo N. Takefumi M. Tetrahedron: Asymmetry  1990,  1:  561 
  • 15b Harding KE. Marman TH. Nam D.-H. Tetrahedron Lett.  1988,  29:  1627 
  • 15c Harding KE. Marman TH. J. Org. Chem.  1984,  49:  2838 
  • 15d Hill CH. Whitesides GM. J. Am. Chem. Soc.  1974,  96:  870 
  • 16 Corey EJ. Guzman-Perez A. Noe MC. J. Am. Chem. Soc.  1995,  117:  10805 
  • 17 Fukuyama T. Laird AA. Hotchkiss LM. Tetrahedron Lett.  1985,  26:  6291 
18

The NMR data of 8 and 9 are consistent with those in the literatures (ref. [12j] for 8 and ref. [12m] for 9). For 8, 1H NMR (500 MHz, D2O) δ 3.73-3.77 (m, 2 H), 3.80-3.86 (m, 4 H), 4.20 (d, 2 H, J = 2.0 Hz); 13C NMR (125 MHz, D2O) δ 61.17, 66.58, 78.36. For 9, 1H NMR (500 MHz, D2O) δ 1.27 (d, 3 H, J = 7.0 Hz), 3.75 (dd, 1 H, J = 7.5 Hz, 10.5 Hz), 3.77-3.87 (m, 3 H), 4.06 (d, 1 H, J = 3.5 Hz), 4.26 (d, 1 H, J = 3.5Hz).