References
<A NAME="RU05403ST-1A">1a</A>
Najera C.
Synlett
2002,
9:
1388
<A NAME="RU05403ST-1B">1b</A>
Williams RM.
Hendrix JA.
Chem.
Rev.
1992,
92:
889
<A NAME="RU05403ST-1C">1c</A>
Williams RM.
Aldrichimica Acta
1992,
11
<A NAME="RU05403ST-1D">1d</A>
Duthaler RO.
Tetrahedron
1994,
50:
1539
<A NAME="RU05403ST-1E">1e</A>
Shen TY. inventors; US Patent, 3316260.
<A NAME="RU05403ST-1F">1f</A>
Blaszczak LC, and
Turner JR. inventors; EP 122157.
<A NAME="RU05403ST-1G">1g</A>
Clark BP.
Harris JR.
Synth.
Commun.
1997,
27:
4223
<A NAME="RU05403ST-2A">2a</A>
Kawasaki T.
Ohno K.
Enoki H.
Umemoto Y.
Sakamoto M.
Tetrahedron Lett.
2002,
43:
4245
<A NAME="RU05403ST-2B">2b</A>
Kawasaki T.
Enoki H.
Matsumura K.
Ohyama M.
Inagawa M.
Sakamoto M.
Org. Lett.
2000,
2:
3027
<A NAME="RU05403ST-2C">2c</A>
Yang CG.
Wang J.
Tang XX.
Jiang B.
Tetrahedron:
Asymmetry
2002,
13:
383
<A NAME="RU05403ST-3A">3a</A>
Humber LG.
Ferdinandi E.
Demerson CA.
Ahmed S.
Shah U.
Mobilio D.
Sabatucci J.
De Lange B.
Labbadia F.
Hughes P.
DeVigilio J.
Neuman G.
Chau TT.
Weichman BM.
J.
Med. Chem.
1988,
31:
1712
<A NAME="RU05403ST-3B">3b</A>
Katz AH.
Demerson CA.
Shaw CC.
Asselin AA.
Humber LG.
Conway KM.
Gavin G.
Guinosso C.
Jensen NP.
Mobilio D.
Noureldin R.
Schmid J.
Shah U.
Van Engen D.
Chau TT.
Weichman BM.
J. Med. Chem.
1988,
31:
1244
<A NAME="RU05403ST-4">4</A>
Blaszczak LC, and
Turner JP. inventors; US Patent, 4492694.
<A NAME="RU05403ST-5A">5a</A>
Sakai N.
Hirasawa M.
Hamajima T.
Konakahara T.
J.
Org. Chem.
2003,
68:
483
<A NAME="RU05403ST-5B">5b</A>
Sakai N.
Hamajima T.
Konakahara .
Tetrahedron
Lett.
2002,
43:
4821
<A NAME="RU05403ST-5C">5c</A>
Janczuk A.
Zhang W.
Xie WH.
Lou SZ.
Cheng JP.
Wang PG.
Tetrahedron Lett.
2002,
43:
4271
<A NAME="RU05403ST-5D">5d</A>
Wynne JH.
Stalick WM.
J.
Org. Chem.
2002,
67:
5850
<A NAME="RU05403ST-5E">5e</A>
Hao J.
Taktak S.
Aikawa K.
Yusa Y.
Hatano M.
Mikami K.
Synlett
2001,
1443
<A NAME="RU05403ST-5F">5f</A>
Xie WH.
Bloomfield KM.
Jin YF.
Dolney NY.
Wang PG.
Synlett
1999,
498
<A NAME="RU05403ST-6A">6a</A>
Jiang B.
Yang CG.
Gu XH.
Tetrahedron Lett.
2001,
42:
2545 ; and references cited therein
<A NAME="RU05403ST-6B">6b</A>
Corey EJ.
Gorgan MJ.
Org.
Lett.
1999,
1:
157
<A NAME="RU05403ST-6C">6c</A>
Ishitani H.
Komiyama S.
Kobayashi S.
Angew.
Chem. Int. Ed.
1998,
37:
3186
<A NAME="RU05403ST-6D">6d</A>
Iyer MS.
Gigstad KM.
Namdev ND.
Lipton M.
J.
Am. Chem. Soc.
1996,
118:
4910
<A NAME="RU05403ST-7">7</A>
Johannsen M.
Chem.
Commun.
1999,
2233
<A NAME="RU05403ST-8A">8a</A>
Ferraris D.
Young B.
Dudding T.
Drury WJ.
Lectka T.
Tetrahedron
1999,
55:
8869
<A NAME="RU05403ST-8B">8b</A>
Ferraris D.
Dudding T.
Young B.
William JD.
Lectka T.
J. Org. Chem.
1999,
64:
2168
<A NAME="RU05403ST-9A">9a</A>
Petasis NA.
Goodman A.
Zavialov IA.
Tetrahedron
1997,
48:
16463
<A NAME="RU05403ST-9B">9b</A>
Petasis NA.
Zavialov IA.
J.
Am. Chem. Soc.
1997,
119:
445
<A NAME="RU05403ST-9C">9c</A>
Petasis NA.
Boral S.
Tetrahedron
Lett.
2001,
42:
539
<A NAME="RU05403ST-10A">10a</A>
Olah GA.
Friedel-Crafts and Related
Reactions
Vol. III:
Interscience;
New
York:
1964.
Part 1.
<A NAME="RU05403ST-10B">10b</A>
Heaney H. In Comprehensive Organic Synthesis
Trost BM.
Pergamon
Press;
New York:
1991.
<A NAME="RU05403ST-11A">11a</A>
Ueda M.
Miyabe H.
Teramachi M.
Miyata O.
Naito T.
Chem.
Commun.
2003,
426
<A NAME="RU05403ST-11B">11b</A>
Bertrand MP.
Coantic S.
Feray L.
Nouguier R.
Perfetti P.
Tetrahedron
2000,
56:
3951
<A NAME="RU05403ST-11C">11c</A>
Bertrand MP.
Feray L.
Nouguier R.
Stella L.
Synlett
1998,
780
<A NAME="RU05403ST-11D">11d</A>
Harwood LM.
Tyler SNG.
Anslow AS.
MacGilp ID.
Drew MGB.
Tetrahedron:
Asymmetry
1997,
8:
4007
<A NAME="RU05403ST-11E">11e</A>
Harwood LM.
Vines KJ.
Drew MGB.
Synlett
1996,
1051
<A NAME="RU05403ST-12A">12a</A>
Tohma S.
Endo A.
Kan T.
Fukuyama T.
Synlett
2001,
1179
<A NAME="RU05403ST-12B">12b</A>
Endo A.
Yanagisawa A.
Abe M.
Tohma S.
Kan T.
Fukuyama T.
J. Am. Chem. Soc.
2002,
124:
6552
<A NAME="RU05403ST-12C">12c</A>
Endo A.
Kan T.
Fukuyama T.
Synlett
1999,
1103
<A NAME="RU05403ST-13A">13a</A>
Snyder HR.
Matteson DS.
J. Am. Chem. Soc.
1957,
79:
2217
<A NAME="RU05403ST-13B">13b</A>
Van Tamelen EE.
Knapp GC.
J.
Am. Chem. Soc.
1955,
77:
1860
<A NAME="RU05403ST-14A">14a</A>
Ottoni O.
de V. F. Neder A.
Dias AKB.
Cruz RP.
Aquino LB.
Org.
Lett.
2001,
3:
1005
<A NAME="RU05403ST-14B">14b</A>
Okauchi T.
Itonaga M.
Minami T.
Owa T.
Kitoh K.
Yoshino H.
Org. Lett.
2000,
2:
1485
<A NAME="RU05403ST-15A">15a</A>
Chen YJ.
Ge CS.
Wang D.
Synlett
2000,
1429
<A NAME="RU05403ST-15B">15b</A>
Ge CS.
Zhang J.
Chen YJ.
Wang D.
Acta Chimica Sinica
2001,
59:
1835
<A NAME="RU05403ST-15C">15c</A>
Ge CS.
Chen YJ.
Wang D.
Synlett
2002,
37
<A NAME="RU05403ST-16">16</A>
Shafer CM.
Molinski TF.
J. Org. Chem.
1996,
61:
2044
<A NAME="RU05403ST-17">17</A>
Meyers AI.
Knaus G.
Kamata K.
Ford ME.
J. Am. Chem. Soc.
1976,
98:
567
<A NAME="RU05403ST-18">18</A>
Representative experimental procedure:
To a solution of indole (1.2 equiv) and chiral cyclic glyoxylate
imine (1.0 equiv) in CH2Cl2 at 0 °C,
TFA (5 equiv) was added dropwise by syringe. After the reaction
mixture was stirred for 3 h at 0 °C, usual work-up furnished
a residue from which the pure product was obtained after purification
with flash chromatography on silica gel [all new compounds
were subjected to 1H NMR, 13C
NMR, IR, MS(FAB) analysis]. The diastereoselectivity was
determined by 1H NMR and 13C NMR
spectra. All compounds gave satisfactory spectral data. Selected
data for compound 3c*: mp: 234-236 °C, [α]D
20 +148.57
(c 0.7, acetone); FTIR (KBr) 3338, 1734, 1693,
1538, 1454, 1377, 1343, 1319, 1256, 1217, 1190, 1086, 1014 cm-1; 1H
NMR(300 Hz, CDCl3): δ 1.38 (t, J = 7 Hz
3 H), 2.54 (br s, 1 H), 4.43 (m, 2 H), 4.90 (d, J = 4
Hz,
1 H), 5.90 (s, 1 H), 6.14 (d, J = 4
Hz, 1 H), 7.11-7.29 (m, 12 H), 7.39-7.45 (m, 2
H), 7.79 (d, J = 8 Hz, 1 H),
8.96 (br s,
1 H); 13C NMR(75
Hz, CDCl3) δ 14.5, 52.8, 58.3, 61.6, 85.4, 113.4,
121.4, 121.8, 125.7, 126.0, 127.6, 128.2, 128.4, 128.6, 128.9, 129.3,
137.2, 138.0, 138.5, 162.3, 169.3; HRMS (FAB): m/z 441.1811
for [MH+] C27H25N2O4 requires
441.1808.
<A NAME="RU05403ST-19">19</A>
X-Ray analysis of 2c:
The crystal used for the X-ray study had the dimensions 0.29 × 0.17 × 0.08
mm. Crystal data: C16H13NO2, M 251.27; orthorhombic; space group, P21; lattice parameters, a = 5.9439 Å, b = 8.4943 Å, c = 25.5719 Å; V = 1291.11 Å3,
Z = 4; D
calcd = 1.293
g/cm3; F
0 = 528; number
of reflections measured = 2737, l = 0.7107 Å.
<A NAME="RU05403ST-20">20</A>
X-Ray analysis of 3hc:
The crystal used for the X-ray study had the dimensions 0.53 × 0.09 × 0.04
mm. Crystal data: C24H19BrN2O2, M 447.32; Monoclinic; space group, C2; lattice
parameters, a = 26.817 Å, b = 7.9070 Å, c = 9.8754 Å; V = 2083.1 Å3,
Z = 4; D
calcd = 1.426
g/cm3; F
0 = 912; number
of reflections measured = 4268, l = 0.7107 Å.
<A NAME="RU05403ST-21">21</A>
Ishii H.
Murakami K.
Sakurada E.
Hosoya K.
Murakami Y.
J.
Chem. Soc., Perkin Trans. 1
1988,
2377
Several methods have existed for
the removal of the chiral template from the similar compounds without
notable racemization:
<A NAME="RU05403ST-22A">22a</A>
Aldous DJ.
Drew MGB.
Hamelin EM.-N.
Harwood LM.
Jahana AB.
Thurairatnam S.
Synlett
2001,
1836
<A NAME="RU05403ST-22B">22b</A>
Cox GG.
Harwood LM.
Tetrahedron:
Asymmetry
1994,
5:
1669
<A NAME="RU05403ST-22C">22c</A>
Harwood LM.
Macro J.
Watkin D.
Williams E.
Wong LF.
Tetrahedron:
Asymmetry
1992,
3:
1127 ;
and also refs.
<A NAME="RU05403ST-22D">22d</A>
Although we did not
study this issue systematically, the preliminary result showed that
when 3bc was subjected to the hydrogenolysis
in aqueous methanol using Pearlman’s catalyst [Pd(OH)2/C] and
TFA under 1 atmosphere of hydrogen gas for 5 h, the corresponding
optically active amino acid was obtained in 82% yield, [α]D
20 +57
(c 0.35, CH3OH).