Abstract
The opening of hindered 2,3α-steroidal epoxide with
primary and secondary amines was performed nearly quantitatively with
a catalytic amount of Gd(OTf)3 in toluene in a sealed
tube at high temperature. This new method is much more efficient (48-97% yields)
than the older classical one (0-64% yields) using a
large excess of amine.
Key words
amino alcohols - amines - epoxides - steroids - lanthanides
References
<A NAME="RS01703ST-1A">1a </A>
Buckett WR.
Hewett CL.
Savage DS.
J.
Med. Chem.
1973,
16:
1116
<A NAME="RS01703ST-1B">1b </A>
Fielding L.
J.
Magn. Reson.
1998,
36:
387 ;
and cited references
<A NAME="RS01703ST-2A">2a </A>
He Q.
Jiang D.
Leuk.
Res.
1999,
23:
369
<A NAME="RS01703ST-2B">2b </A>
He Q.
Na X.
Leuk. Res.
2001,
25:
455
<A NAME="RS01703ST-3A">3a </A>
Maltais R.
Luu-The V.
Poirier D.
J. Med. Chem.
2002,
45:
640
<A NAME="RS01703ST-3B">3b </A>
Maltais R.
Luu-The V.
Poirier D.
Bioorg. Med.
Chem.
2001,
9:
3101
<A NAME="RS01703ST-3C">3c </A>
Tremblay MR.
Lin SX.
Poirier D.
Steroids
2001,
66:
821
<A NAME="RS01703ST-3D">3d </A>
Maltais R.
Tremblay MR.
Poirier D.
J.
Comb. Chem.
2000,
2:
604
<A NAME="RS01703ST-3E">3e </A>
Tremblay MR.
Poirier D.
J. Comb.
Chem.
2000,
2:
48
<A NAME="RS01703ST-3F">3f </A>
Poirier D.
Ciobanu LC.
Bérubé M.
Bioorg. Med. Chem. Lett.
2002,
12:
2833
<A NAME="RS01703ST-3G">3g </A>
Poirier D.
Bydal P.
Tremblay MR.
Sam KM.
Luu-The V.
Mol.
Cell. Endocrinol.
2001,
171:
119
<A NAME="RS01703ST-3H">3h </A>
Tremblay MR.
Poirier D.
J. Steroid
Biochem. Mol. Biol.
1998,
66:
179
<A NAME="RS01703ST-4A">4a </A>
Möller F.
Methoden
der Organischen Chemie (Houben-Weyl)
4th ed., Vol
11/1:
Thieme Verlag;
Stuggart:
1957.
p.311
<A NAME="RS01703ST-4B">4b </A>
Mousseron M.
Jullien J.
Jolchine Y.
Bull.
Chem. Soc. Jpn.
1952,
757
<A NAME="RS01703ST-4C">4c </A>
Freifelder M.
Stone GR.
J. Org. Chem.
1961,
26:
1477
<A NAME="RS01703ST-4D">4d </A>
Lutz RE.
Freek JA.
Murphey RS.
J. Am. Chem. Soc.
1948,
70:
2015
<A NAME="RS01703ST-5A">5a </A>
Carré MC.
Houmounou JP.
Caubère P.
Tetrahedron Lett.
1985,
26:
3107
<A NAME="RS01703ST-5B">5b </A>
Kissel CL.
Rickborn B.
J. Org. Chem.
1972,
37:
2060
<A NAME="RS01703ST-5C">5c </A>
Overman LE.
Flippin LA.
Tetrahedron
Lett.
1981,
22:
195
<A NAME="RS01703ST-5D">5d </A>
Yamada J.-I.
Yumoto M.
Yamamoto Y.
Tetrahedron
Lett.
1989,
30:
4255
<A NAME="RS01703ST-5E">5e </A>
Fiorenza M.
Ricci A.
Taddei M.
Tassi D.
Seconi G.
Synthesis
1983,
640
<A NAME="RS01703ST-6A">6a </A>
Iqbal J.
Pandey A.
Tetrahedron
Lett.
1990,
31:
575
<A NAME="RS01703ST-6B">6b </A>
Sekar G.
Singh VK.
J. Org. Chem.
1999,
64:
287
<A NAME="RS01703ST-6C">6c </A>
Reddy LR.
Reddy MA.
Bhanumathi N.
Rao KR.
Synlett
2000,
339
<A NAME="RS01703ST-6D">6d </A>
Reddy LR.
Reddy MA.
Bhanumathi N.
Rao KR.
Synthesis
2001,
6:
831
<A NAME="RS01703ST-6E">6e </A>
Ollevier T.
Lavie-Compin G.
Tetrahedron Lett.
2002,
43:
7891
<A NAME="RS01703ST-7A">7a </A>
Fu X.-L.
Wu S.-H.
Synth.
Commun.
1997,
27:
1677
<A NAME="RS01703ST-7B">7b </A>
Van de Weghe P.
Collin J.
Tetrahedron Lett.
1995,
36:
1649
<A NAME="RS01703ST-7C">7c </A>
Chini M.
Crotti P.
Macchia F.
Tetrahedron Lett.
1990,
31:
4661
<A NAME="RS01703ST-7D">7d </A>
Chini M.
Crotti P.
Macchia F.
J. Org.
Chem.
1991,
56:
5939
<A NAME="RS01703ST-7E">7e </A>
Cossy J.
Bellosta V.
Hamoir C.
Desmurs JR.
Tetrahedron Lett.
2002,
43:
7083
<A NAME="RS01703ST-7F">7f </A>
Auge J.
Leroy F.
Tetrahedron Lett.
1996,
37:
7715
<A NAME="RS01703ST-7G">7g </A>
Fujiwara M.
Imada M.
Baba A.
Matsuda H.
Tetrahedron Lett.
1989,
30:
739
<A NAME="RS01703ST-7H">7h </A>
Posner GH.
Rogers DZ.
J.
Am. Chem. Soc.
1977,
99:
8208
<A NAME="RS01703ST-7I">7i </A>
Posner GH.
Rogers DZ.
J.
Am. Chem. Soc.
1977,
99:
8214
<A NAME="RS01703ST-8A">8a </A>
Hewett CL.
Savage DS.
J. Chem. Soc. C
1968,
1134
<A NAME="RS01703ST-8B">8b </A>
He Q.
Xu YH.
Act. Pharm. Sin.
1992,
27:
101
<A NAME="RS01703ST-8C">8c </A>
Anderson A.
Boyd AC.
Byford A.
Campbell AC.
Gemmell DK.
Hamilton NM.
Hill DR.
Hill-Venning C.
Lambert JJ.
Maidment MS.
May V.
Marshall RJ.
Peters JA.
Rees DC.
Stevenson D.
Sundaram H.
J. Med. Chem.
1997,
40:
1668
<A NAME="RS01703ST-9">9 </A>
Chini M.
Crotti P.
Favero L.
Macchia F.
Pineshi M.
Tetrahedron
Lett.
1994,
35:
433
<A NAME="RS01703ST-10">10 </A>
The classical method (A) for synthesis
of 2β-aminosteroids 2 consists
in refluxing epoxide 1 (1 mmol) with the
desired amine (30 mmol) and H2 O (18 mmol) overnight.
The mixture is then cooled, triturated with H2 O and the precipitate
filtered. The solid is dissolved in CH2 Cl2 and
the solution is dried with MgSO4 , filtered and evaporated.
The crude product is then purified by silica gel flash chromatography
using an appropriate mixture of MeOH:CH2 Cl2 .
<A NAME="RS01703ST-11">11 </A>
The new method (B) for synthesis of
2β-aminosteroids 2 consists in
heating epoxide 1 (1 mmol) dissolved in
toluene (30 mL) with the desired amine (3 mmol) and Gd(OTf)3 (0.2 mmol)
in a Schlenk tube purged with argon, at 150-190 °C for
2 h (primary amines) or overnight (secondary and cyclic amines).
The reaction mixture is cooled and then poured on a silica gel column
for flash chromatography (MeOH:CH2 Cl2 ).
<A NAME="RS01703ST-12">12 </A>
The relative configuration of the
2β-aminosteroids given in Table
[1 ]
was confirmed by X-ray
crystallographic examination of a representative compound. A comparison
of the NMR spectroscopic data allowed the assignment of the 2β-amino-3α-hydroxy
configuration in the other compounds.