References
<A NAME="RU04803ST-1">1</A>
Pearson WH.
Studies
in Natural Product Chemistry
Vol. 1:
.
Elsevier;
Amsterdam:
1988.
p.323-358
<A NAME="RU04803ST-2A">2a</A> For
a recent review, see:
Nadin A.
J.
Chem. Soc., Perkin Trans. 1
1998,
3493
<A NAME="RU04803ST-2B">2b</A> For some recent examples,
see:
Itoh T.
Yamazaki N.
Kibayashi C.
Org. Lett.
2002,
4:
2469
<A NAME="RU04803ST-2C">2c</A>
Verma SK.
Atanes MN.
Busto JB.
Thai DL.
Rapoport H.
J. Org. Chem.
2002,
67:
1314
<A NAME="RU04803ST-2D">2d</A> See also:
Cossy J.
Willis C.
Bellosta V.
BouzBouz S.
J. Org. Chem.
2002,
67:
1982
<A NAME="RU04803ST-2E">2e</A>
Chakraborty TK.
Srinivasu P.
Kumar SK.
Kunwar AC.
J.
Org. Chem.
2002,
67:
2093
<A NAME="RU04803ST-2F">2f</A>
Agami C.
Comesse S.
Kadouri-Puchot C.
J.
Org. Chem.
2002,
67:
2424
<A NAME="RU04803ST-2G">2g</A> See further:
Hsu R.
Cheng L.
Chang N.
Tai H.
J. Org. Chem.
2002,
67:
5044
<A NAME="RU04803ST-2H">2h</A>
Neipp CE.
Martin SF.
Tetrahedron
Lett.
2002,
43:
1779
<A NAME="RU04803ST-2I">2i</A>
Aggarwal VK.
Sandrinelli F.
Charmant JPH.
Tetrahedron: Asymmetry
2002,
13:
87
<A NAME="RU04803ST-2J">2j</A>
Comins DL.
Zheng X.
Goehring RR.
Org. Lett.
2000,
2:
1611
<A NAME="RU04803ST-2K">2k</A>
Ma D.
Sun H.
Org. Lett.
2000,
2:
2503
<A NAME="RU04803ST-2L">2l</A>
Evans PA.
Robinson JE.
Org.
Lett.
1999,
1:
1929
<A NAME="RU04803ST-3">3</A> For a recent review on allylic amination,
see:
Johannsen M.
Jorgensen KA.
Chem. Rev.
1998,
98:
1689
For some examples, see:
<A NAME="RU04803ST-4A">4a</A>
Hirai Y.
Watanabe J.
Nozaki T.
Yokoyama H.
Yamaguch S.
J.
Org. Chem.
1997,
62:
776
<A NAME="RU04803ST-4B">4b</A>
Yokoyama H.
Otaya K.
Kobayashi H.
Miyazawa M.
Yamaguch S.
Hirai Y.
Org. Lett.
2000,
2:
2427
<A NAME="RU04803ST-4C">4c</A>
Ma S.
Gao W.
Org. Lett.
2002,
4:
2989
<A NAME="RU04803ST-5">5</A> Palladium-catalyzed tandem allylation
of diamines was recently reported, see:
Yang S.-C.
Shue Y.-J.
Liu P.-C.
Organometallics
2002,
21:
2013
The iridium-catalyzed regioselective
allylic amination was studied by Takeuchi’s group. See:
<A NAME="RU04803ST-6A">6a</A>
Takeuchi R.
Ue N.
Tanabe K.
Yamashita K.
Shiga N.
J. Am. Chem.
Soc.
2001,
123:
9525
<A NAME="RU04803ST-6B">6b</A>
Takeuchi R.
Shiga N.
Org. Lett.
1999,
1:
265
<A NAME="RU04803ST-6C">6c</A>
Takeuchi R.
Synlett
2002,
1954
Our studies on the iridium-catalyzed
reaction. See:
<A NAME="RU04803ST-7A">7a</A>
Kanayama T.
Yoshida K.
Miyabe H.
Takemoto Y.
Angew. Chem. Int. Ed.
2003, in
press
<A NAME="RU04803ST-7B">7b</A>
Miyabe H.
Yoshida K.
Matsumura A.
Yamauchi M.
Takemoto Y.
Synlett
2003,
567
<A NAME="RU04803ST-8">8</A>
Preparation of
4a and 5-7: To a solution of a corres-ponding dialdehyde
(1 equiv) in THF was added vinyl-magnesium bromide (2.6 equiv) under
an argon atmosphere at 0 °C. After being stirred
at same tempareture for 3 h, the reaction mixture was quenched with
1 M HCl, and then extracted with Et2O. The organic phase
was washed with H2O, aq NaHCO3 and brine,
dried over MgSO4, and concentrated at reduced pressure.
Purification of the residue by flash chromatography (hexane:EtOAc = 3:1)
afforded diol. To a solution of diol (1 equiv) in pyridine or pyridine-CH2Cl2 were
added DMAP (0.06 equiv) and MeOCOCl (5 equiv) under an argon atmosphere
at 0 °C. After being stirred at same tempareture
for 1-24 h, the reaction mixture was diluted with H2O,
and then extracted with Et2O. The organic phase was washed
with H2O and brine, dried over MgSO4, and
concentrated at reduced pressure. Purification of the residue by
flash chromatography (hexane:EtOAc = 10:1)
afforded 4a or 5-7.
The configuration of cis- and trans-isomers
was assigned since 1H NMR data showed similarity
with the related 2,6-disubstituted piperidines. In general, the
signals due to the N-benzylic hydrogen of cis-2,6-disubstituted
piperidines give singlet, while that of trans-isomers
give the AB quartet. See:
<A NAME="RU04803ST-9A">9a</A>
Takahata H.
Takahashi S.
Kouno S.
Momose T.
J. Org. Chem.
1998,
63:
2224
<A NAME="RU04803ST-9B">9b</A>
Takahata H.
Ouchi H.
Ichinose M.
Nemoto H.
Org. Lett.
2002,
4:
3459
<A NAME="RU04803ST-9C">9c</A>
Harusawa S.
Sibata N.
Yamazaki N.
Sakanoue S.
Ishida T.
Yoneda R.
Kurihara T.
Chem.
Pharm. Bull.
1989,
37:
2647
<A NAME="RU04803ST-10">10</A>
Representative
Experimental Procedure: A mixture of 4a (100
mg, 0.387 mmol), benzylamine 2A (41.5 mg,
0.387 mmol), and [IrCl(cod)]2 (10.4
mg, 0.0155 mmol) in MeCN (1.0 mL) was stirred under argon atmosphere
at 20 °C for 2 h. The reaction mixture was concentrated
at reduced pressure. Purification of the residue by preparative
TLC (hexane:EtOAc = 10:1) afforded cis-9A (43 mg,
52%) and trans-9A (26
mg, 32%). cis-9A: 1H
NMR (500 MHz, CDCl3): δ = 7.28-7.19
(5 H, m), 5.70 (2 H, m), 5.13 (2 H, d, J = 17.1
Hz), 5.02 (2 H, d, J = 10.1
Hz), 3.74 (2 H, s), 3.06 (2 H, br m), 1.81 (2 H, br m), 1.58 (2
H, br m). 13C NMR (125 MHz, CDCl3): δ = 141.7,
137.7, 130.0, 127.7, 126.6, 115.6, 66.4, 53.8, 30.4. HRMS: Calcd
for C15H19N (M+): 213.1517. Found:
213.1525. trans-9A: 1H
NMR (500 MHz, CDCl3):
δ = 7.44-7.10
(5 H, m), 5.78 (2 H, ddd, J = 8.9,
10.1, 17.1 Hz), 5.08 (2 H, d, J = 10.1
Hz), 5.00 (2 H, d, J = 17.1
Hz), 3.80, 3.39 (2 H, AB q, J = 13.7
Hz), 3.39 (2 H, br m), 2.10 (2 H, br m), 1.61 (2 H, br m). 13C
NMR (125 MHz, CDCl3): δ = 140.4, 139.7,
128.6, 127.9, 126.3, 116.2, 63.8, 51.2, 30.0. HRMS: Calcd for C15H19N
(M+): 213.1517. Found: 213.1510.