References
<A NAME="RG05703ST-1A">1a</A>
Kim BM.
So SM.
Choi HJ.
Org. Lett.
2002,
4:
949
<A NAME="RG05703ST-1B">1b</A>
Ungureanu I.
Klotz P.
Schoenfelder A.
Mann A.
Tetrahedron Lett.
2001,
42:
6087
<A NAME="RG05703ST-1C">1c</A>
Turner JJ.
Sikkema FD.
Filippov DV.
van der Marel GA.
van Boom JH.
Synlett
2001,
1727
<A NAME="RG05703ST-1D">1d</A>
Fort S.
McCort I.
Duréault A.
Depezay J.-C.
Synlett
1997,
1235
<A NAME="RG05703ST-2">2</A>
Matthews JL.
McArthur DR.
Muir KW.
Tetrahedron Lett.
2002,
43:
5401
<A NAME="RG05703ST-3A">3a</A>
Ghosh AK.
Bilcer G.
Schiltz G.
Synthesis
2001,
2203
<A NAME="RG05703ST-3B">3b</A>
Kim BM.
Bae SJ.
So SM.
Yoo HT.
Chang SK.
Lee JH.
Kang JS.
Org.
Lett.
2001,
3:
2349
<A NAME="RG05703ST-4">4</A>
Andersson PG.
Johansson F.
Tanner D.
Tetrahedron
1998,
54:
11549
<A NAME="RG05703ST-5">5</A>
Andersson PG.
Guijarro D.
Tanner D.
J.
Org. Chem.
1997,
62:
7364
<A NAME="RG05703ST-6">6</A>
Tanner D.
Johansson F.
Harden A.
Andersson PG.
Tetrahedron
1998,
54:
15731
<A NAME="RG05703ST-7">7</A>
Müller P.
Nury P.
Helv. Chim. Acta
2001,
84:
662
<A NAME="RG05703ST-8">8</A>
McCoull W.
Davis FA.
Synthesis
2000,
1347
<A NAME="RG05703ST-9">9</A>
Osborn HMI.
Sweeney J.
Tetrahedron:
Asymmetry
1997,
8:
1693
<A NAME="RG05703ST-10">10</A>
Kanger T.
Kriis K.
Pehk T.
Müürisepp A.-M.
Lopp M.
Tetrahedron:
Asymmetry
2002,
13:
857
<A NAME="RG05703ST-11A">11a</A>
Alexakis A.
Tomassini A.
Chouillet C.
Roland S.
Mangeney P.
Bernardinelli G.
Angew.
Chem. Int. Ed.
2000,
39:
4093
<A NAME="RG05703ST-11B">11b</A>
Alexakis A.
Andrey O.
Org. Lett.
2002,
4:
3611
<A NAME="RG05703ST-12">12</A>
Sato M.
Sato Y.
Yano S.
Yoshikawa S.
J. Chem. Soc., Dalton Trans.
1985,
895
For recent examples of catalytic
asymmetric aziridation, see:
<A NAME="RG05703ST-13A">13a</A>
Nishimura M.
Minakata S.
Takahashi T.
Oderaotochi Y.
Komatsu M.
J.
Org. Chem.
2002,
67:
2101
<A NAME="RG05703ST-13B">13b</A>
Aggarwal VK.
Alonso E.
Fang G.
Ferrara M.
Hynd G.
Porcelloni M.
Angew. Chem. Int. Ed.
2001,
40:
1433
<A NAME="RG05703ST-13C">13c</A>
Sugihara H.
Daikai K.
Jin XL.
Furuno H.
Inanaga J.
Tetrahedron
Lett.
2002,
43:
2735
<A NAME="RG05703ST-13D">13d</A>
Aggarwal VK.
Ferrara M.
O’Brien CJ.
Thompson A.
Jones RVH.
Fieldhouse R.
J.
Chem. Soc., Perkin Trans. 1
2001,
1635
For recent examples of stoichiometric
asymmetric aziridation, see:
<A NAME="RG05703ST-14A">14a</A>
Olofsson B.
Wijtmans R.
Somfai P.
Tetrahedron
2002,
58:
5979
<A NAME="RG05703ST-14B">14b</A>
Shi M.
Jiang J.-K.
Feng Y.-S.
Tetrahedron:
Asymmetry
2000,
11:
4923
<A NAME="RG05703ST-14C">14c</A>
Harms G.
Schaumann E.
Adiwidjaja G.
Synthesis
2001,
577
<A NAME="RG05703ST-14D">14d</A>
Lee K.-D.
Suh J.-M.
Park J.-H.
Ha H.-J.
Choi HG.
Park CS.
Chang JW.
Lee WK.
Dong Y.
Yun H.
Tetrahedron
2001,
57:
8267
<A NAME="RG05703ST-15A">15a</A>
Kriis K.
Kanger T.
Pehk T.
Lopp M.
Proc. Estonian Acad.
Sci. Chem.
2001,
50:
173 ; Chem. Abstr. 2002,
136, 118420
<A NAME="RG05703ST-15B">15b</A>
Scheurer A.
Mosset P.
Saalfrank RW.
Tetrahedron:
Asymmetry
1997,
8:
1243
<A NAME="RG05703ST-15C">15c</A>
Scheurer A.
Mosset P.
Saalfrank RW.
Tetrahedron:
Asymmetry
1999,
10:
3559
<A NAME="RG05703ST-16">16</A>
Mitsunobu O. In:
Comprehensive Organic Synthesis
Vol. 6:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
p.1-31
<A NAME="RG05703ST-17">17</A>
1H NMR (500 MHz,
CDCl3) δ 1.44 (18 H, s, t-Bu),
3.05 (2 H, m, CHO), 3.20 and 3.47 (4 H, m, CH2NH), 5.43
(2 H,
br s, NH); 13C NMR
(125 MHz, CDCl3) δ 28.29 (q, J = 126.7 Hz, t-Bu), 38.24 (t, J = 126.7
Hz, CH2NH), 55.10 (d, J = 175.0
Hz, CHO), 79.69 (s, t-Bu), 156.23 (s,
CONH).CI-MS m/z (%)
303 (3) (M + H)+, 191 (100), 173 (39),
116 (63).
<A NAME="RG05703ST-18">18</A>
Barrero AF.
Alvarez-Mazaneda EJ.
Chahboun R.
Tetrahedron Lett.
2000,
41:
1959
<A NAME="RG05703ST-19">19</A>
Agami C.
Couty F.
Tetrahedron
2002,
58:
2701
<A NAME="RG05703ST-20">20</A>
General experimental procedure for
direct ring closure: To a solution of dimesylate 6 (0.46
mmol) in anhydrous THF (5 mL) NaH (0.96 mmol, 60% dispersion
in mineral oil) was added portion wise at 0 °C under Ar
atmosphere. The mixture was stirred at room temperature for 5 h,
quenched with water, extracted with EtOAc. The solvent was evaporated
and the mixture was purified by column chromatography on silica
gel affording bisaziridine 7 (0.39 mmol)
in 85% yield. 1H NMR (500 MHz, CDCl3) δ 1.43
(18 H, s, t-Bu), 2.14 (2 H, d, J = 3.3 Hz, H-3,3′),
2.28 (2 H, d,
J = 6.1
Hz, H-3,3′), 2.71 (2 H, m, H-2,2′); 13C
NMR (125 MHz, CDCl3) 27.82 (q, J = 127
Hz, t-Bu), 29.51 (dd, J = 176.8
Hz, 170.5 Hz, C-3.3′), 35.47 (d, J = 169
Hz, C-2,2′), 81.36 (s, t-Bu),
161.88 (s, CON). MS m/z (%)
285 (5) (M + H)+, 229 (18), 173 (72),
129 (18), 57 (100), 41 (76). [α]D
20 +175
(c 4.4, MeOH)
<A NAME="RG05703ST-21">21</A>
Jennings WB.
Boyd DR. In
Cyclic
Organonitrogen Stereodynamics
Lambert JB.
Takeuchi Y.
Verlag Chemie;
New
York:
1992.
<A NAME="RG05703ST-22">22</A>
Gololobov YG.
Kasukhin LF.
Tetrahedron
1992,
48:
1353
<A NAME="RG05703ST-23">23</A>
Buijnsters PJJA.
van der Reijden FP.
Feiters MC.
de Gelder R.
Sommerdijk NAJM.
Nolte RJM.
Zwanenburg B.
J. Chem. Crystallogr.
1999,
29:
179
<A NAME="RG05703ST-24">24</A>
General experimental procedure for
the Staudinger reaction: To a solution of azidodiol 2 (1.1
mmol) in anhydrous acetonitrile (6 mL) PPh3 (2.3 mmol)
was added and the solution was stirred for 3 h at room temperature
followed by reflux for 4 h. The mixture was cooled in the ice-bath
and Et3N (2.3 mmol) and Boc2O (2.25 mmol)
were added. The mixture was stirred overnight at room temperature,
the solvent was evaporated and the residue was triturated with Et2O.
The organic layer was purified by column chromatography on silica
gel affording target compound 7 in 71% yield.
<A NAME="RG05703ST-25">25</A>
McCort I.
Ballereau S.
Duréault A.
Depezay J.-C.
Tetrahedron
2002,
58:
8947
<A NAME="RG05703ST-26">26</A>
General experimental procedure for
the Staudinger reaction using polymer-supported PPh3:
To a solution of azidodiol 2 (1.1 mmol)
in anhydrous acetonitrile (12 mL) polymer-supported PPh3 (2% DVB,
3.3 mmol) was added and the solution was stirred for 3 h at room
temperature followed by reflux for 11 h. The resin was filtered,
the filtrate was evaporated and the residue was purified on aluminum oxide(basic)
affording target compound 10 in 25% yield.
MS m/z (%);
83 (54), 68 (32), 56 (100), 42 (61); HRMS calcd for C4H7N2 (M - H)+ 83.0609,
found 83.0612.