Abstract
New shelf-stable pyridylboronic acids have been synthesized:
bromine-lithium exchange followed by reaction with triisopropylborate
(TIPB) yielded 2-fluoro-5-pyridylboronic acid (4), 3-bromo-5-pyridylboronic
acid (5 ) and 2-ethoxy-5-pyridylboronic acid
(6 ); directed lithiation followed by reaction
with trimethylborate (TMB) or TIPB afforded 2-methoxy-3-pyridylboronic
acid (8), 3-bromo-6-methoxy-4-pyridylboronic acid (11 )
and 3-bromo-6-ethoxy-4-pyridylboronic acid (12 ).
Cross-coupling of pyridylboronic acids 4 , 6 , 8 , and 11 with 3-bromoquinoline [Cs2 CO3 , Pd(PPh3 )2 Cl2 ,
1,4-dioxane, 95 °C] gave pyridinylquinoline derivatives 13 , 15 -17 in 50-77% yields:
the analogous reaction of 5 was low yielding
due to further in situ reactions of the product 14 .
Cross-coupling of 12 with 2-bromo-5-nitrothiophene
gave 3-bromo-4-(5-nitro-2-thienyl)-6-ethoxypyridine (18 ).
Key words
pyridine - boronic acids - cross-coupling - Suzuki reaction - heterobiaryl
References
<A NAME="RP00103SS-1A">1a </A> Review:
Stanforth SP.
Tetrahedron
1998,
54:
263
<A NAME="RP00103SS-1B">1b </A>
Suzuki A. In
Metal-Catalyzed Cross-Coupling Reactions
Diederich F.
Stang PJ.
Wiley-VCH;
Weinheim:
1998.
Chap.
2.
<A NAME="RP00103SS-2">2 </A>
Miyaura N.
Suzuki A.
Chem. Rev.
1995,
95:
2457
For examples see
<A NAME="RP00103SS-3A">3a </A>
Mitchell MB.
Wallbank PJ.
Tetrahedron
Lett.
1991,
32:
2273
<A NAME="RP00103SS-3B">3b </A>
Zhang H.
Chan KS.
Tetrahedron Lett.
1996,
37:
1043
<A NAME="RP00103SS-3C">3c </A>
Wang C.
Kilitziraki M.
MacBride JAH.
Bryce MR.
Horsburgh LE.
Sheridan AK.
Monkman AP.
Samuel IDW.
Adv. Mater.
2000,
12:
217
<A NAME="RP00103SS-3D">3d </A>
Ng S.-C.
Lu H.-F.
Chan HSO.
Fujii A.
Laga T.
Yoshino K.
Adv. Mater.
2000,
12:
1122
<A NAME="RP00103SS-3E">3e </A>
Wang C.
Kilitziraki M.
Palsson L.-O.
Bryce MR.
Monkman AP.
Samuel IDW.
Adv. Funct.
Mater.
2001,
11:
47
<A NAME="RP00103SS-3F">3f </A>
Feuerstein M.
Laurenti D.
Bougeant C.
Doucet H.
Santelli M.
Chem.
Commun.
2001,
325
<A NAME="RP00103SS-3G">3g </A>
Monkman AP.
Palsson L.-O.
Higgins RWT.
Wang C.
Bryce MR.
Batsanov AS.
Howard JAK.
J.
Am. Chem. Soc.
2002,
124:
6049
<A NAME="RP00103SS-4A">4a </A>
Thompson WJ.
Jones JH.
Lyle PA.
Thies JE.
J. Org. Chem.
1988,
53:
2052
<A NAME="RP00103SS-4B">4b </A>
Oh-e T.
Miyaura N.
Suzuki A.
J.
Org. Chem.
1993,
58:
2201
<A NAME="RP00103SS-4C">4c </A>
Li JJ.
Yue WS.
Tetrahedron Lett.
1999,
40:
4507
<A NAME="RP00103SS-4D">4d </A>
Lehmann U.
Henze O.
Schlüter AD.
Chem.-Eur. J.
1999,
5:
854
<A NAME="RP00103SS-5">5 </A>
Fischer FC.
Havinger E.
Recl. Trav. Chim. Pays-Bas
1965,
84:
439
<A NAME="RP00103SS-6">6 </A>
Fischer FC.
Havinger E.
Recueil
1974,
93:
21
<A NAME="RP00103SS-7A">7a </A>
Cai D.
Larsen RD.
Reider PJ.
Tetrahedron Lett.
2002,
43:
4285
<A NAME="RP00103SS-7B">7b </A>
Li W.
Nelson DJ.
Jensen MS.
Hoerrner RS.
Cai D.
Larsen RD.
Reider PJ.
J. Org. Chem.
2002,
67:
5394
<A NAME="RP00103SS-7C">7c </A>
Matondo H.
Ouhaja N.
Souirti S.
Baboulène M.
Main Group Metal
Chem.
2002,
25:
163 ; this
article states that 2-pyridylboronic acid and 3-pyridylboronic acid
have been obtained from the corresponding pyridyl Grignard reagent
and trimethylsilylborate although details are not given
<A NAME="RP00103SS-8">8 </A>
Droes R.
Nardin G.
Randaccio L.
Tauzher G.
Vuano S.
Inorg.
Chem.
1997,
36:
2463
<A NAME="RP00103SS-9">9 </A>
Dreos R.
Nardin G.
Randaccio L.
Siega P.
Tauzher G.
Vrdoljak V.
Inorg. Chem.
2001,
40:
5536
<A NAME="RP00103SS-10">10 </A>
Bouillon A.
Lancelot J.-C.
Collot V.
Bovy PR.
Rault S.
Tetrahedron
2002,
58:
2885
<A NAME="RP00103SS-11">11 </A>
Bouillon A.
Lancelot J.-C.
Collot V.
Bovy PR.
Rault S.
Tetrahedron
2002,
58:
3323
<A NAME="RP00103SS-12">12 </A>
Bouillon A.
Lancelot J.-C.
Collot V.
Bovy PR.
Rault S.
Tetrahedron
2002,
58:
4368
<A NAME="RP00103SS-13">13 </A>
Parry PR.
Wang C.
Batsanov AS.
Bryce MR.
Tarbit B.
J.
Org. Chem.
2002,
67:
7541
Reviews:
<A NAME="RP00103SS-14A">14a </A>
Marsais F.
Quéguiner G.
Snieckus V.
Epsztajn J.
Adv. Heterocycl. Chem.
1991,
52:
187
<A NAME="RP00103SS-14B">14b </A>
Anctil EJ.-G.
Snieckus V.
J. Organomet.
Chem.
2002,
653:
150
<A NAME="RP00103SS-15">15 </A>
Comins DL.
LaMunyon DH.
Tetrahedron Lett.
1998,
29:
773
<A NAME="RP00103SS-16">16 </A>
Leeson PD.
Emmett JC.
J. Chem. Soc., Perkin
Trans. 1
1988,
3085
<A NAME="RP00103SS-17">17 </A>
Compounds 5 and 12 could not be obtained analytically pure.
As noted by other workers,
[7 ]
[9 ]
it is not unusual for arylboronic
acids to give unsatisfactory elemental analysis. This can arise
if they are hygroscopic or exist as a mixture of the free acid and
the anhydride.
<A NAME="RP00103SS-18">18 </A>
Shirota Y.
J.
Mater. Chem.
2000,
10:
1