Subscribe to RSS
DOI: 10.1055/s-2003-38360
A Highly Efficient and Useful Synthetic Protocol for the Cleavage of tert-Butyldimethylsilyl (TBS) Ethers Using a Catalytic Amount of Acetyl Chloride in Dry Methanol
Publication History
Publication Date:
28 March 2003 (online)

Abstract
A wide variety of tert-butyldimethylsilyl (TBS) ethers as well as tert-butyldiphenylsilyl (TBDPS) ethers 1 can be easily deprotected to the corresponding parent hydroxyl compounds 2 by employing catalytic amounts of acetyl chloride in dry MeOH at 0 °C to room temperature in good yields. Some of the major advantages are mild conditions, high efficiency, high selectivity, high yields, easy operation, and also compatibility with other protecting groups. Furthermore, no acetylation nor chlorination takes place under the experimental conditions.
Key words
deprotection - tert-butyldimethylsilyl (TBS) ethers - tert-butyldiphenylsilyl (TBDPS) ethers - acetyl chloride
- 1
Corey EJ.Venkateswarlu A. J. Am. Chem. Soc. 1972, 94: 6190 - 2
Hanessian S.Lavallee P. Can. J. Chem. 1975, 53: 2975 -
3a
Greene TW.Wuts PGM. Protective Groups in Organic Synthesis 3rd ed.: John Wiley and Sons; New York: 1999. p.127-144 -
3b
Clark JH. Chem. Rev. 1980, 80: 429 -
4a
Kelly DR.Roberts SM.Newton RF. Synth. Commun. 1979, 9: 295 -
4b
Collington EW.Finch H.Smith IJ. Tetrahedron Lett. 1985, 26: 681 -
4c
Shimshock SJ.Watermire RE.Deshong P. J. Am. Chem. Soc. 1991, 113: 8791 -
4d
Zhang W.Robins MJ. Tetrahedron Lett. 1992, 33: 1177 -
4e
Corey EJ.Yi KY. Tetrahedron Lett. 1992, 33: 2289 -
4f
Ramasamy KS.Averett D. Synlett 1999, 709 -
4g
Metcalf BW.Burkhart JP.Jund K. Tetrahedron Lett. 1980, 21: 35 -
4h
Ranu BC.Jana U.Majee A. Tetrahedron Lett. 1999, 40: 1985 -
5a
Lee AS.Yeh H.Shie J. Tetrahedron Lett. 1998, 39: 5249 -
5b
Bajwa JS.Vivelo J.Slade J.Repi O.Blacklock T. Tetrahedron Lett. 2000, 41: 6021 -
5c
Oriyama T.Oda M.Gono J.Koga G. Tetrahedron Lett. 1994, 35: 2027 -
5d
Gopinath R.Patel BK. Org. Lett. 2000, 2: 4177 -
5e
Barros MT.Maycock CD.Thomassigny C. Synlett 2001, 1146 -
5f
Kartha KPR.Field RA. Synlett 1999, 311 -
6a
Bartoli G.Bosco M.Marcantoni E.Sambri L.Torregiani E. Synlett 1998, 209 -
6b
Ankala SV.Fenteany G. Tetrahedron Lett. 2002, 43: 4729 -
6c
Farras J.Serra C.Vilarrasa J. Tetrahedron Lett. 1998, 39: 327 -
6d
Grieco PA.Markworth CJ. Tetrahedron Lett. 1999, 40: 665 -
7a
Hunter R.Hinz W.Richards P. Tetrahedron Lett. 1999, 40: 3643 -
7b
Oriyama T.Kobayashi Y.Noda K. Synlett 1998, 1047 -
7c
Lipshutz BH.Keith J. Tetrahedron Lett. 1998, 39: 2495 -
7d
Sabitha G.Syamala M.Yadav JS. Org. Lett. 1999, 1: 1701 -
7e
Paterson I.Cowden CJ.Rahn VS.Woodrow MD. Synlett 1998, 915 -
8a
Mondal E.Bose G.Khan AT. Synlett 2001, 785 -
8b
Mondal E.Bose G.Sahu PR.Khan AT. Chem. Lett. 2001, 1158 -
8c
Khan AT.Boruwa J.Mondal E.Bose G. Indian J. Chem, Sect. B 2001, 40: 1039 -
8d
Mondal E.Sahu PR.Bose G.Khan AT. Tetrahedron Lett. 2002, 43: 2843 -
8e
Mondal E.Sahu PR.Khan AT. Synlett 2002, 463 -
8f
Mondal E.Sahu PR.Bose G.Khan AT. J. Chem. Soc., Perkin Trans. 1 2002, 1026 -
8g
Khan AT.Mondal E.Sahu PR.Islam S. Tetrahedron Lett. 2003, 44: 919 -
8h
Khan AT.Mondal E.Sahu PR. Synlett 2003, 377
References
Khan, A. T.; Mondal, E. unpublished results.
10A Typical Procedure for Deprotection: To a stirred solution of silylated compound 1 (1 mmol) in dry MeOH (3 mL) was added AcCl (11 µL, 0.15 mmol) at ice-bath temperature. The reaction mixture was stirred at ice-bath temperature or r.t. depending upon the substrate (see Table [1] ). After completion of the reaction (monitored by TLC), CH2Cl2 was added (20 mL), the reaction mixture was neutralized with 10% NaHCO3 (1 mL) and washed with H2O (10 mL). Finally, the organic layer was dried (Na2SO4) and concentrated in vacuo to give a ‘crude’ residue, which was purified on silica gel column chromatography. The final desired products were obtained in good to excellent yields.
11
Spectroscopic
data for compound 1i:
1H NMR (CDCl3,
200 MHz): δ = 0.01 [s, 6 H, Si(CH3)2], 0.85 [s,
9 H, SiC(CH3)3], 1.19-1.60
(m, 18 H, -CH2), 2.25 (t, 2 H, J = 7.3
Hz, -CH
2CO2CH3),
3.55 (t, 2 H, J = 6.4
Hz,
-CH
2OTBS), 3.62
(s, 3 H, CO2CH
3).
Anal. Calcd for C19H40O3Si: C,
66.22; H, 11.70. Found: C, 66.01; H, 11.65. For
compound 2i: 1H NMR (CDCl3,
200 MHz): δ = 1.20-1.70 (m, 18 H, -CH2-),
1.80 (br s, 1 H, OH, D2O exchangeable), 2.30 (t, 2 H, J = 6.8 Hz,
-CH
2CO2CH3),
3.63 (t, 2 H, J = 5.9
Hz, -CH
2OH), 3.67 (s, 3 H,
CO2CH3). Anal. Calcd for C13H26O3:
C, 67.78; H, 11.38. Found: C, 67.52; H, 11.26. For
compound 1v: 1H NMR (400 MHz, CDCl3): δ = 0.01 [s,
3 H, Si(CH3)2], 0.02 [s,
3 H, Si(CH3)2], 0.85 [s,
9 H, SiC(CH3)3], 1.25 (t, 3 H, J = 7.3 Hz,
SCH2CH
3],
2.63-2.71 (m, 2 H, SCH
2CH3),
3.21-3.24 (m, 1 H, H-5), 3.46 (t, 1 H, J = 9.0
Hz, H-3), 3.56 (t, 1 H, J = 9.3
Hz, H-2), 3.61 (t, 1 H, J = 9.0
Hz, H-4), 3.75 (dd, 1 H, J = 3.8
Hz, J = 11.2
Hz, H-6), 3.80 (dd, 1 H, J = 2.0
Hz, J = 11.7
Hz, H-6′), 4.38 (d, 1 H, J = 9.8
Hz, H-1), 4.62 (d, 1 H, J = 10.2
Hz, -OCHPh), 4.68 (d, 1 H, J = 10.2 Hz,
OCHPh), 4.79 (dd, 2 H, J = 4.6
Hz, J = 10.7
Hz, OCH2Ph), 4.85 (dd, 2 H, J = 4.0
Hz, J = 10.3 Hz,
OCH2Ph), 7.19-7.33 (m, 15 H, ArH). 13C
NMR: δ =
-5.37, -5.04,
15.19, 18.30, 24.34, 25.89 (3 C), 62.30, 75.06, 75.46, 75.87, 77.68,
80.03, 81.83, 84.40, 86.62, 127.69, 127.81, 127.93, 128.00, 128.29,
128.38, 128.46, 138.09, 138.32, 138.52. Anal. Calcd for C35H48O5SSi:
C, 69.04; H, 7.94, S, 5.26. Found: C, 69.35; H, 7.85; S, 5.01. For compound 2v: 1H
NMR (400 MHz, CDCl3): δ = 1.32 (t,
3 H, J = 7.3
Hz, SCH2CH
3), 1.95
(br s, 1 H, OH, D2O exchangeable), 2.71-2.80
(m, 2 H, SCH
2CH3),
3.35-3.39 (m, 1 H, H-5), 3.41 (t, 1 H, J = 9.3
Hz, H-3), 3.58 (t, 1 H, J = 9.3
Hz, H-2), 3.70 (t, 1 H, J = 8.8
Hz, H-4), 3.87 (d, 1 H, J = 11.5
Hz, -OCHPh), 4.50 (d, 1 H, J = 9.8 Hz,
H-1), 4.65 (d, 1 H, J = 11
Hz, -OCHPh), 4.74 (d, 1 H, J = 11 Hz, OCHPh), 4.86 (d, 2 H, J = 12.4
Hz, -OCH
2Ph), 4.89 (d, 1 H, J = 10.0 Hz,
-OCHPh), 4.92 (dd, 2 H, J = 6.8
Hz, J = 11
Hz, H-6, H-6′), 7.25-7.38 (m, 15 H, ArH). 13C
NMR: δ = 15.16, 25.20, 62.15, 75.17, 75.57, 75.74,
75.76, 77.69, 79.27, 81.77, 85.27, 86.47, 127.71, 127.77, 127.89,
127.96, 128.07, 128.29, 128.41, 128.46, 128.52, 137.90 (2 C), 138.41.
Anal. Calcd for C29H34O5S: C, 70.42;
H, 6.93, S, 6.48. Found: C, 70.20; H, 6.86; S, 6.24. For
compound 1x: 1H NMR (CDCl3,
300 MHz) δ = 0.07 [s, 6 H, Si(CH3)2],
0.90 [s, 9 H, SiC(CH3)3],
1.33 [s, 6 H, =C(CH3)2],
1.44 (s, 3 H, =CCH3), 1.54 (s, 3 H, =CCH3),
3.70-3.86 (m, 3 H, H-2, H-3, H-5), 4.30 (dd, 2 H, J = 2.3 Hz, J = 7.2 Hz,
H-4, H-6), 4.60 (dd, 1 H, J = 1.6
Hz, J = 7.9
Hz, H-6′), 5.52 (d, 1 H, J = 4.9
Hz, H-1). Anal. Calcd for C18H34O6Si:
C, 57.72; H, 9.15. Found: C, 57.55; H, 9.03. For
compound 2x: 1H NMR (CDCl3,
300 MHz): δ = 1.34 [s, 6 H, =C(CH3)2],
1.46 (s, 3 H, =CCH3), 1.54 (s, 3 H, =CCH3),
2.28 (br s, 1 H, OH, D2O exchange-able), 3.75 (t, 1 H, J = 7.3 Hz,
H-4), 3.82-3.90 (m, 2 H, H-2 and H-5), 4.27 (d, 1 H, J = 7.9 Hz,
H-3), 4.34 (dd, 1 H, J = 2.3
Hz, J = 4.9
Hz, H-6), 4.62 (dd, 1 H, J = 2.3
Hz, J = 7.9
Hz, H-6′), 5.57 (d, 1 H, J = 5.0
Hz, H-1). Anal. Calcd for C12H20O6:
C, 55.37; H, 7.74. Found: C, 55.48; H, 7.69.