Abstract
A series of novel guanidinoglycosides was successfully synthesized.
This was accomplished with the use of Mitsunobu conditions as a
strategy to convert the glycopyranose anomeric hydroxy group to
give the corresponding substituted masked guanidines in high yields.
Subsequent deprotection and coupling with Fmoc protected β-amino
acid, afforded a series of N ,N ′-substituted-methylisothioureas.
Cleavage of Fmoc followed by concomitant cyclization was achieved
with a catalytic amount of DBU to give the guanidinoglycosides.
Key words
guanidine - glycosides - Mitsunobu reaction - coupling - cyclization
References <A NAME="RF05902SS-1">1 </A>
First and second authors contributed
equally to this work.
<A NAME="RF05902SS-2A">2a </A>
Lemieux RU.
Wolfrom ML.
Adv. Carbohydr. Chem.
1948,
3:
337
<A NAME="RF05902SS-2B">2b </A>
Maurin M.
Raoult D.
Antimicrob. Agents Chemother.
2001,
45:
2977
<A NAME="RF05902SS-3">3 </A>
Delaware DL.
Sharma MS.
Iyengar BS.
Remers WA.
J.
Antibiot.
1986,
39:
251
<A NAME="RF05902SS-4">4 </A>
Cotner ES.
Smith PJ.
J. Org. Chem.
1998,
63:
1737
<A NAME="RF05902SS-5">5 </A>
Reitz AB.
Tuman RW.
Marchione CS.
Jordan AD.
Bowden CR.
Maryanoff BE.
J. Med. Chem.
1989,
32:
2110
<A NAME="RF05902SS-6A">6a </A>
Feichtinger K.
Zapf C.
Sings HL.
Goodman M.
J. Org.
Chem.
1998,
63:
3804
<A NAME="RF05902SS-6B">6b </A>
Feichtinger K.
Sings HL.
Baker TJ.
Matthews K.
Goodman M.
J.
Org. Chem.
1998,
63:
8432
<A NAME="RF05902SS-7">7 </A>
Baker TJ.
Luedtke NW.
Tor Y.
Goodman M.
J. Org. Chem.
2000,
65:
9054
<A NAME="RF05902SS-8">8 </A>
Lin P.
Lee CL.
Sim MM.
J.
Org. Chem.
2001,
66:
8243
<A NAME="RF05902SS-9A">9a </A>
Gololobov YG.
Zhmurova IN.
Kasukhin LF.
Tetrahedron
1981,
37:
437
<A NAME="RF05902SS-9B">9b </A>
Molina P.
Vilaplana MJ.
Synthesis
1994,
1197
<A NAME="RF05902SS-10A">10a </A>
Hughes DL.
Org. Prep. Proced.
Int.
1996,
28:
127
<A NAME="RF05902SS-10B">10b </A>
Mitsunobu O.
Synthesis
1981,
1
<A NAME="RF05902SS-11A">11a </A>
Dodd DS.
Wallace OB.
Tetrahedron Lett.
1998,
39:
5701
<A NAME="RF05902SS-11B">11b </A>
Kim H.
Mathew F.
Ogbu C.
Synlett
1999,
2:
193
<A NAME="RF05902SS-11C">11c </A>
Dodd DS.
Kozikowski AP.
Tetrahedron
Lett.
1994,
35:
977
<A NAME="RF05902SS-12">12 </A>
To further prove the existence of
rotomers, Boc-protection of 2 was carried
out using Boc2 O and DMAP in CH2 Cl2 . Both 2a and 2b yielded
only their respective α rotomers.
<A NAME="RF05902SS-13A">13a </A>
Bu X.
Xie G.
Law CW.
Guo Z.
Tetrahedron
Lett.
2002,
43:
2419
<A NAME="RF05902SS-13B">13b </A>
Sheppeck JE.
Kar H.
Hong H.
Tetrahedron Lett.
2000,
41:
5329
<A NAME="RF05902SS-13C">13c </A>
Metcalf CA.
Vu CB.
Sundaramoorthi R.
Jacobsen VA.
Laborde EA.
Green J.
Green Y.
Macek KJ.
Merry TJ.
Pradeepan SG.
Uesugi M.
Varkhedkar VM.
Holt DA.
Tetrahedron
Lett.
1998,
39:
3435
<A NAME="RF05902SS-13D">13d </A>
Wade JD.
Bedford J.
Sheppard RC.
Tregear GW.
Pept.
Res.
1991,
4:
194
<A NAME="RF05902SS-14A">14a </A>
Ouyang X.
Kiselyov AS.
Tetrahedron
1999,
55:
8295
<A NAME="RF05902SS-14B">14b </A>
Mori Y.
Yaegashi K.
Furukawa H.
Tetrahedron Lett.
1999,
40:
7239
<A NAME="RF05902SS-14C">14c </A>
Magri NF.
Kingston DGI.
J. Nat.
Prod.
1988,
51:
298
<A NAME="RF05902SS-14D">14d </A>
Roush WR.
Follows BC.
Tetrahedron
Lett.
1994,
28:
4935