Synlett 2003(2): 0203-0206
DOI: 10.1055/s-2003-36798
LETTER
© Georg Thieme Verlag Stuttgart · New York

A New Green Approach to the Friedländer Synthesis of Quinolines

Antonio Arcadi*, Marco Chiarini, Sabrina Di Giuseppe, Fabio Marinelli
Dipartimento di Chimica Ingegneria Chimica e Materiali della Facoltà di Scienze, Università di L’Aquila, Via Vetoio, Coppito Due, 67100 L’Aquila, Italy
Fax: +39(862)433753; e-Mail: arcadi@univaq.it;
Further Information

Publication History

Received 6 November 2002
Publication Date:
22 January 2003 (online)

Abstract

A new approach to the Friedländer synthesis of quinolines is described. Polysubstituted quinolines are readily prepared under milder conditions than in other existing methods through a gold(III)-catalysed sequential condensation/annulation reaction of o-amino aromatic carbonyls and ketones containing active methylene groups.

    References

  • 1 Doubè D. Blouin M. Brideau C. Chan C. Desmarais S. Ethier D. Falgueyret JP. Friesen RW. Girard M. Girard Y. Guay J. Tagari P. Young RN. Bioorg. Med. Chem. Lett.  1998,  8:  1255 
  • 2 Kalluraya B. Sreevinasa S. Farmaco  1998,  53:  399 
  • 3 Maguire MP. Sheets KR. McVety K. Spada AP. Zilberstein A. J. Med. Chem.  1994,  37:  2129 
  • 4a Huma HZS. Halder R. Kaltra SS. Das J. Iqbal J. Tetrahedron Lett.  2002,  43:  6485 
  • 4b Kim JN. Chung YM. Im YJ. Tetrahedron Lett.  2002,  43:  6209 
  • 4c Cacchi S. Fabrizi G. Goggiamani A. Moreno-Manãs M. Vallribera A. Tetrahedron Lett.  2002,  43:  5537 
  • 4d Legros J.-Y. Primault G. Fiaud J.-C. Tetrahedron  2001,  43:  2507 
  • 4e Coffey DS. May SA. Ratz AM. In Progress in Heterocyclic Chemistry   Vol. 13:  Gribble GW. Gilchrist TL. Pergamon; London: 2001.  p.243 ; and references therein
  • 5 Cheng C.-C. Yan S.-J. In Organic Reactions   Vol. 28:  J. Wiley; New York: 1982.  p.37 ; and references therein
  • 6a Hashmi ASK. Frost TM. Bats JW. Catalysis Today  2002,  72:  19 
  • 6b Dyker G. Angew. Chem. Int. Ed.  2000,  39:  4237 
  • 7a Arcadi A. Di Giuseppe S. Marinelli F. Rossi E. Adv. Synth. Catal.  2001,  343:  443 
  • 7b Arcadi A. Di Giuseppe S. Marinelli F. Rossi E. Tetrahedron: Asymmetry  2001,  12:  2715 
  • 9a Rossi E. Abbiati A. Arcadi A. Marinelli F. Tetrahedron Lett.  2001,  42:  3705 
  • 9b Arcadi A. Marinelli F. Rossi E. Tetrahedron  1999,  55:  13233 
  • 10 ZnCl2 has been previously reported as catalyst in the Friedländer synthesis of quinolines: Walser A. Flynn T. Fryer RI. J. Heterocycl. Chem.  1975,  12:  737 
  • 11 Kobayashi S. Kakumoto K. Sugiura M. Org. Lett.  2002,  4:  1319 
  • 14 Fehnel EA. J. Heterocycl. Chem.  1967,  4:  565 
  • 15 Fehnel EA. Cohn DE. J. Org. Chem.  1966,  31:  3852 
  • 16 Kempter G. Klug P. Z. Chem.  1971,  11:  61 
  • 17 Kempter G. Möbius G. J. Prakt. Chem.  1996,  34:  298 
  • 18 Fehnel EA. J. Org. Chem.  1966,  31:  2899 
8

Arcadi, A.; Bianchi, G.; Di Giuseppe, S.; Marinelli, F. Green Chemistry, in press.

12

A typical procedure for quinoline 3 is as follows: to a solution of 2-amino-5-chlorobenzophenone 2c (0.2 g, 0.86 mmol) and 2,4-pentanedione 1b (0.13 g, 1.29 mmol) in EtOH (3 mL) NaAuCl4·2H2O was added at r.t. under nitrogen atmosphere. The reaction mixture was stirred for 48 h. The solvent was then evaporated under reduced pressure. The residue, purified by flash chromatography (silica gel, 95/5 v/v n-hexane/ethyl acetate), afforded 1-(6-chloro-2-methyl-4-phenyl-quinolin-3-yl)-ethanone 3f (0.23 g, 89% yield); mp 153-155 °C. IR (KBr): 1715 cm-1. 1H NMR (CDCl3): δ = 2.00 (s, 3 H), 2.68 (s, 3 H), 7.33-7.96 (m, 8 H). 13C NMR (CDCl3): δ = 23.8, 31.7, 124.8, 125.7, 128.9, 129.2, 129.8, 130.5, 130.8, 132.3, 134.4, 135.4, 142.9, 145.8, 153.8, 205.1. EI-MS: m/z (relative intensity) = 295 (39) [M+], 281 (100), 252 (22).

13

Selected data for 3g, 3i, 3j, 3g: Mp 80-81 °C. IR (KBr): 1750 cm-1. 1H NMR (CDCl3): δ = 2.71 (s, 3 H), 7.34-7.67 (m, 9 H). 13C NMR (CDCl3): δ = 23.8, 115,4 (q, J = 308 Hz), 126.3, 127.1, 127.6, 128.2, 129.1, 129.4, 130.3, 131.3, 131.6, 147.5, 148.3, 153.3, 189.4 (q, J = 38 Hz). EI-MS: m/z (relative intensity) = 315(68) [M+], 247 (100), 218 (27). 3i: Mp 118-120 °C. 1H NMR (CDCl3): δ = 1.33-1.47 (m, 6 H), 1.90-1.95 (m, 2 H), 2.73 (t, J = 5.6 Hz, 2 H), 3.21 (t, J = 6.1 Hz, 2 H), 7.18-7.26 (m, 4 H), 7.42-7.47 (m, 3 H), 7.52-7.60 (m, 1 H), 8.05-8.09 (m, 1 H). 13C NMR (CDCl3): δ = 25.6, 26.5, 27.9, 31.0, 31.1, 36.2, 125.2, 125.9, 127.0, 127.4, 128.0, 128.1, 128.4, 129.1, 131.6, 137.4, 146.2, 146.3, 163.2. EI-MS: m/z (relative intensity) = 287 (100) [M+], 258 (27). 3j: Mp 194-196 °C. 1H NMR (CDCl3): δ = 2.02-2.06 (m, 2 H), 2.38 (t, J = 6.7 Hz, 2 H), 2.57 (t, J = 6.9 Hz, 2 H), 7.07-8.22 (m, 12 H). 13C NMR (CDCl3): δ = 25.1, 29.6, 31.9, 115.8 (d, J = 22.2 Hz), 126.2, 126.3, 127.2, 127.9, 128.4, 128.6, 129.4, 129.5, 129.7, 130.4, 161.9 (d, J = 244.2 Hz). EI-MS: m/z (relative intensity) = 339 (100) [M+].

19

Selected data for 4: IR(neat): 3460, 3350, 1720, 1665 cm-1. 1H NMR (CDCl3): δ = 2.05 (s, 3 H), 5.43 (s, 1 H), 7.27-7.66 (m, 9 H). 13C NMR (CDCl3): δ = 20.3, 91.5, 114.4 (q, J = 218 Hz), 126.9, 127.3, 128.5, 129.4, 129.9, 130.7, 131.7, 133.5, 134.4, 137.6, 176.6 (q, J = 33 Hz), 195.3. EI-MS:
m/z (relative intensity) = 324 (100) [M + 1+], 265 (21), 220 (94), 105 (67).