Abstract
The high yielding synthesis of novel four picket fence porphyrins
via palladium catalyzed Suzuki cross-coupling reactions of 5,15-bis(pyrimidinyl)porphyrin
1 and commercially available arylboronic
acids is described.
Key words
porphyrins - Suzuki cross-coupling - palladium - arylations - steric hindrance
References
<A NAME="RG30002ST-1">1 </A>
Kadish KM.
Smith KM.
Guilard R.
The Porphyrin Handbook
Academic
Press;
San Diego:
2000.
<A NAME="RG30002ST-2">2 </A>
Volz H.
Hassler M.
Z. Naturforsch.
1988,
43b:
1043
<A NAME="RG30002ST-3">3 </A>
Suslick KS.
Fox MM.
J. Am. Chem. Soc.
1983,
105:
3507
<A NAME="RG30002ST-4">4 </A>
Suslick KS.
Cook BR.
J. Chem. Soc., Chem.
Commun.
1987,
200
<A NAME="RG30002ST-5A">5a </A>
Cook BR.
Reinert TJ.
Suslick KS.
J.
Am. Chem. Soc.
1986,
108:
7281
<A NAME="RG30002ST-5B">5b </A>
Suslick K.
Cook B.
Fox M.
J. Chem.
Soc., Chem. Commun.
1985,
580
<A NAME="RG30002ST-6A">6a </A>
Chang CK.
Yeh C.-Y.
Lai T.-S.
Macromol. Symp.
2000,
156:
117
<A NAME="RG30002ST-6B">6b </A>
Bag N.
Chern S.-S.
Peng S.-M.
Chang CK.
Tetrahedron Lett.
1995,
36:
6409
For reviews on the cross-coupling
of aryl bromides with arylboronic acids, see:
<A NAME="RG30002ST-7A">7a </A>
Suzuki A.
J.
Organomet. Chem.
1999,
576:
147
<A NAME="RG30002ST-7B">7b </A>
Suzuki A.
Metal-catalysed
Cross-coupling Reactions
Diederich F.
Stang PJ.
Wiley;
New
York:
1998.
p.49
<A NAME="RG30002ST-7C">7c </A>
Malleron J.-L.
Fiaud J.-C.
Legros J.-Y.
Handbook of Palladium-catalysed Organic Reactions
Academic
Press;
San Diego:
1997.
<A NAME="RG30002ST-7D">7d </A>
Miyaura N.
Suzuki A.
Chem. Rev.
1995,
95:
2457
<A NAME="RG30002ST-8">8 </A>
Motmans F.
Ceulemans E.
Smeets S.
Dehaen W.
Tetrahedron Lett.
1999,
40:
7545
<A NAME="RG30002ST-9">9 </A>
Smeets S.
Asokan CV.
Motmans F.
Dehaen W.
J. Org. Chem.
2000,
65:
5882
<A NAME="RG30002ST-10">10 </A>
Sharman WM.
Van Lier JE.
J. Porphyrins Phthalocyanines
2000,
4:
441
<A NAME="RG30002ST-11A">11a </A>
Tse MK.
Zhou Z.
Mak TCW.
Chan KS.
Tetrahedron
2000,
56:
7779
<A NAME="RG30002ST-11B">11b </A>
Muzzi CM.
Medforth CJ.
Voss L.
Cancilla M.
Lebrilla C.
Ma J.-G.
Shelnutt JA.
Smith KM.
Tetrahedron
Lett.
1999,
40:
6159
<A NAME="RG30002ST-11C">11c </A>
Zhou X.
Tse MK.
Wan TSM.
Chan KS.
J.
Org. Chem.
1996,
61:
3590
<A NAME="RG30002ST-11D">11d </A>
Chan KS.
Zhou X.
Au MT.
Tam CY.
Tetrahedron
1995,
51:
3129
<A NAME="RG30002ST-11E">11e </A>
Chan KS.
Zhou X.
Luo BS.
Mak TCW.
J.
Chem. Soc., Chem. Commun.
1994,
271
<A NAME="RG30002ST-12">12 </A>
Zhou X.
Chan KS.
J. Org. Chem.
1998,
63:
99
<A NAME="RG30002ST-13">13 </A>
Hyslop AG.
Kellett MA.
Iovine PM.
Therien MJ.
J.
Am. Chem. Soc.
1998,
120:
12676
<A NAME="RG30002ST-14A">14a </A>
Yu LH.
Lindsey JS.
Tetrahedron
2001,
57:
9285
<A NAME="RG30002ST-14B">14b </A>
Deng Y.
Chang CK.
Nocera DG.
Angew. Chem. Int. Ed.
2000,
39:
1066
<A NAME="RG30002ST-15A">15a </A>
Kimura M.
Shiba T.
Muto T.
Hanabusa K.
Shirai H.
Macromolecules
1999,
32:
8237
<A NAME="RG30002ST-15B">15b </A>
Hyslop AG.
Therien MJ.
Inorg.
Chim. Acta
1998,
275:
427
<A NAME="RG30002ST-15C">15c </A>
Chan C.-S.
Tse AK.-S.
Chan KS.
J.
Org. Chem.
1994,
59:
6084
<A NAME="RG30002ST-15D">15d </A>
Chan C.-S.
Mak CC.
Chan KS.
Tetrahedron Lett.
1993,
34:
5125
<A NAME="RG30002ST-16A">16a </A>
Shi B.
Boyle RW.
J.
Chem. Soc., Perkin Trans. 1
2002,
1397
<A NAME="RG30002ST-16B">16b </A>
Shultz DA.
Gwaltney KP.
Lee H.
J. Org. Chem.
1998,
63:
769
<A NAME="RG30002ST-17A">17a </A>
Cooke G.
Augier de Cremiers H.
Rotello VM.
Tarbit B.
Vanderstraeten PE.
Tetrahedron
2001,
57:
2787
<A NAME="RG30002ST-17B">17b </A>
Jiang B.
Yang C.-G.
Heterocycles
2000,
53:
1489
<A NAME="RG30002ST-17C">17c </A>
Hannah DR.
Sherer EC.
Roy VD.
Titman RB.
Laughton CA.
Stevens MFG.
J. Bioorg. Med. Chem.
2000,
8:
739
<A NAME="RG30002ST-17D">17d </A>
Yang Y.
Martin AR.
Heterocycles
1992,
34:
1395
<A NAME="RG30002ST-17E">17e </A>
Crisp GT.
Macolino V.
Synth.
Commun.
1990,
20:
413
<A NAME="RG30002ST-17F">17f </A>
Stavenuiter J.
Hamzink M.
van der Hulst R.
Zomer G.
Westra G.
Kriek E.
Heterocycles
1987,
26:
2711
<A NAME="RG30002ST-17G">17g </A>
Gronowitz S.
Hörnfeldt A.-B.
Kristjansson V.
Musil T.
Chem. Scripta
1986,
26:
305
<A NAME="RG30002ST-18">18 </A>
Schomaker JM.
Delia TJ.
J. Org. Chem.
2001,
66:
7125
<A NAME="RG30002ST-19">19 </A>
Experimental Details,
Representative Procedure for Porphyrin 2a: To a mixture of
porphyrin 1 (100 mg, 0.12 mmol) and Pd(PPh3 )4 (4
mg, 3 mol%) in toluene (7.5 mL), phenylboronic acid (87
mg, 0.72 mmol) was added, immediately followed by aq Na2 CO3 (2
M, 1 mL). The mixture was flushed with N2 for 5 min and
the reaction mixture was then heated under reflux for 24 h. After
cooling, the reaction mixture was evaporated under reduced pressure to
dryness. To the reaction mixture H2 O (50 mL) was added and
the aq layer was extracted with CH2 Cl2 (3 × 50
mL). The organic layers were collected, dried over MgSO4 and evaporated
in vacuum. Purification by column chromatography (silica gel, CH2 Cl2 /EtOAc:
10/1) furnished the pure compound 2a as
a purple solid (83 mg, 70%). Rf = 0.3
(CH2 Cl2 /EtOAc 10/1). 1 H
NMR (400 MHz, CDCl3 ): δ = -2.58
(sbr , 2 H), 1.61 (s, 12 H), 2.57 (s, 6 H), 6.48 (t, 8 H),
6.60 (t, 4 H), 7.00 (d, 8 H), 7.19 (s, 4 H), 8.32 (d, 4 H), 8.53
(d, 4 H), 9.75 (s, 2 H). 13 C NMR (100
MHz, CDCl3 ): δ = 21.3,
21.4, 112.4, 118.4, 127.4, 127.7, 127.8, 129.4, 130.2, 131.2, 137.6,
137.9, 138.8, 139.2, 146.5, 158.4, 168.2. MS (electrospray): 1007.5 [(M+ ) + H].
UV/VIS (CH2 Cl2 ): λmax = 432.6
(log ε = 5.586), 528.2 (log ε = 4.271),
564.3 (log ε = 4.025), 603.0
(log ε = 3.829), 662.2 (log ε = 3.673). The
optical spectra are extremely similar to the one of the starting
porphyrin 1 but are red-shifted for about
12-16 nm. Suslick et al.
[3 ]
reported
the same red-shift (ca. around 30 nm) for their porphyrin compared
to the tetraphenylporphyrin.
<A NAME="RG30002ST-20">20 </A>
All arylboronic acids were purchased
from Acros.