Synlett 2003(1): 0051-0054
DOI: 10.1055/s-2003-36227
LETTER
© Georg Thieme Verlag Stuttgart · New York

A Short Enantioselective Synthesis of Naturally Occurring Muscarine Alkaloids from 1,4-Hexadiene

Jens Hartung*, Patricia Kunz, Stefanie Laug, Philipp Schmidt
Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
Fax: +49(931)8884606; e-Mail: hartung@chemie.uni-wuerzburg.de;
Further Information

Publication History

Received 24 September 2002
Publication Date:
18 December 2002 (online)

Abstract

Short enantioselective syntheses of naturally occurring muscarine alkaloids 1a-d starting from (Z)-1,4-hexadiene (2) and its E-configured isomer 4 have been devised. Key transformations in both sequences were (i) asymmetric dihydroxylation of 1,4-hexadienes 2 and 4 and (ii) application of a novel diastereoselective bromoetherification of (2S,3R)-5-hexene-2,3-diol (3) (40% ee) and (2S,3S)-5-hexene-2,3-diol (5) (90% ee) which was initiated by a vanadium(V)-catalyzed oxidation of bromide using tert-butyl hydroperoxide as primary oxidant.

    References

  • 1a Wang P.-C. Joullié MM. In The Alkaloids   Vol. 23:  Brossi A. Academic Press; New York: 1984.  p.327-380  
  • 1b Lewis JR. Nat. Prod. Rep.  1998,  15:  417 
  • 1c Lewis JR. Nat. Prod. Rep.  1998,  15:  371 
  • 2a Eugster CH. Waser PG. Experientia  1954,  10:  298 
  • 2b Eugster CH. Naturwissenschaften  1968,  55:  305 
  • 3a Bollinger H. Eugster CH. Helv. Chim. Acta  1971,  54:  2704 
  • 3b Eugster CH. Helv. Chim. Acta  1956,  39:  1002 
  • 4 Kögl F. Salemink CA. Schouten H. Jellinek F. Recl. Trav. Chim. Pays Bas  1957,  76:  109 
  • 5 Nitta K. Stadelmann RJ. Eugster CH. Helv. Chim. Acta  1977,  60:  1747 
  • 6a Bollinger H. Eugster CH. Helv. Chim. Acta  1971,  54:  1332 
  • 6b Catalformo P. Eugster CH. Helv. Chim. Acta  1970,  53:  848 
  • 6c List HP. Müller H. Arch. Pharm. (Weinheim, Ger.)  1959,  292:  777 
  • 6d Eugster CH. Müller G. Helv. Chim. Acta  1959,  42:  1189 
  • 7 Waser PG. Pharmacol. Res.  1961,  13:  465 
  • 8 Wilkinson S. Quart. Rev. Chem. Soc.  1961,  15:  153 
  • 9 Eugster CH. Schleusener E. Helv. Chim. Acta  1969,  52:  708 
  • 10a Kang KH. Cha MY. Pae NA. Choi KI. Cho YS. Koh HY. Chung BY. Tetrahedron Lett.  2000,  41:  8137 
  • 10b Takano S. Iwabuchi Y. Ogasawara K. J. Chem. Soc., Chem. Commun.  1989,  1371 
  • 10c Mulzer J. Angermann A. Münch W. Schlichthörl G. Hentzschel A. Liebigs Ann. Chem.  1987,  7 
  • 10d Amouroux R. Gerin B. Chastrette M. Tetrahedron  1985,  41:  5321 
  • 10e Still WC. Schneider JA. J. Org. Chem.  1980,  45:  3375 
  • 10f Hardegger E. Lohse F. Helv. Chim. Acta  1957,  40:  244 
  • 11a Norrild JC. Pedersen C. Synthesis  1997,  1128 
  • 11b Popsavin V. Beric O. Csanádi J. Popsavin M. Miljkovic D. J. Serb. Chem. Soc.  1995,  60:  625 
  • 11c Chmielewski M. Guzik P. Hintze B. Daniewski WM. J. Org. Chem.  1985,  50:  5360 
  • 11d Fronza G. Fuganti C. Grasselli P. Tetrahedron Lett.  1978,  3941 
  • 11e Corrodi H. Hardegger E. Kögl F. Helv. Chim. Acta  1957,  40:  2454 
  • 12a Angle SR. El-Said NA. J. Am. Chem. Soc.  2002,  124:  3608 
  • 12b Popsavin V. Beric O. Popsavin M. Radic L. Csanádi J. Cirin-Novta V. Tetrahedron  2000,  56:  5929 
  • 12c Popsavin V. Beric O. Popsavin M. Lajsic S. Miljkovic D. Carbohydr. Lett.  1998,  3:  1 
  • 13 Popsavin V. Beric O. Popsavin M. Csanádi J. Miljkovic D. Carbohydr. Res.  1995,  269:  343 
  • 14 De Amici M. Dallanoce C. De Micheli C. Grana E. Barbieri A. Ladinsky H. Schiavi G. Zonta F. J. Med. Chem.  1992,  35:  1915 ; and references cited therein
  • 15a From l-arabinose: Hardegger E. Lohse F. Helv. Chim. Acta  1957,  40:  2383 
  • 15b From l-rhamnose: Mantell SJ. Fleet GWJ. Brown D. J. Chem. Soc., Perkin Trans. 1  1992,  3023 
  • 15c From 2-deoxy-l-ribose: Pochet S. Huynh-Dinh T. J. Org. Chem.  1982,  47:  193 
  • 15d From d-mannose: Mubarak AM. Brown DM. J. Chem. Soc., Perkin Trans. 1  1982,  809 
  • 15e Hardegger E. Furter H. Kiss J. Helv. Chim. Acta  1958,  41:  2401 
  • 15f From d-glucosamine: Cox HC. Hardegger E. Kögl F. Liechti P. Lohse F. Salemink CA. Helv. Chim. Acta  1958,  41:  229 
  • For examples:
  • 16a Knight DW. Shaw D. Fenton G. Synlett  1994,  295 
  • 16b Chan TH. Li CJ. Can. J. Chem.  1992,  70:  2726 
  • 16c Amouroux R. Gerin B. Chastrette M. Tetrahedron Lett.  1982,  23:  4341 
  • 18a AD-mix-α®: K2[OsO2(OH)4], K2CO3, K3[Fe(CN)6], 1,4-bis(9-O-dihydroquinyl)phthalazine; AD-mix-β®: K2[OsO2(OH)4], K2CO3, K3[Fe(CN)6], 1,4-bis(9-O-dihydroquinidyl)phthalazine. For a review on the AD reaction, see: Kolb HC. VanNieuwenhze MS. Sharpless KB. Chem. Rev.  1994,  94:  2483 
  • 18b For enantioselective dihydroxylations of polyenes see: Becker H. Soler MA. Sharpless KB. Tetrahedron  1995,  51:  1345 
  • 19 Paquette LA. Mitzel TM. J. Org. Chem.  1996,  61:  8799 
  • 21 Wang L. Sharpless KB. J. Am. Chem. Soc.  1992,  114:  7568 
  • 22 Xu D. Crispino GA. Sharpless KB. J. Am. Chem. Soc.  1992,  114:  7570 
  • 23 Hale KJ. Lennon JA. Manaviazar S. Javaid MH. Hobbs CJ. Tetrahedron Lett.  1995,  36:  1359 
  • 24 Sharpless KB. Amberg W. Bennani YL. Crispino GA. Hartung J. Jeong K.-S. Kwong H.-L. Morikawa K. Whang Z.-M. Xu D. Zhang X.-L. J. Org. Chem.  1992,  57:  2768 
  • 26 Mimoun H. Mignard M. Brechot P. Saussine L. J. Am. Chem. Soc.  1986,  108:  3711 
  • 27 Hartung J. Schmidt P. Synlett  2000,  367 
  • 28 Preparation of tetrahydrofurans 6a and 6b (from 3) and 6c and 6d (from 5) was performed according to the following general procedure: A solution of (2S,3S)-hexene-2,3-diol(5) (116 mg, 1.00 mmol), [VOL(EtO)(EtOH)] (L = N-(2-hydroxyphenyl)salicylideneimine dianion) (36.9 mg, 0.10 mmol),25-27 pyridinium hydrobromide (176 mg, 1.10 mmol) and tert-butyl hydroperoxide (200 µL, 5.5 M in nonane, 1.10 mmol) in CHCl3 (10 mL) was stirred at 20 °C until diol 5 has been completely consumed (˜ 6 h). Afterwards, the reaction mixture was concentrated under reduced pressure (40 °C/250 mbar) and the crude product was purified by filtration through a short pad Al2O3(Et2O) to afford an oil which was subjected to a Kugelrohr-distillation (130 °C/20 mbar). Yield: 113 mg (0.058 mmol, 59%), 6c:6d = 27:73, colorless liquid. MS (70 eV, EI), m/z (%): 242/240(6) [M+], 160(15) [M+ - HBr], 147(100) [M+ - CH2Br], 131(41) [C10H11 +], 129(23) [M+ - CH2Br - H2O], 117(16) [C9H9 +], 91(66) [C7H7 +], 77(10) [C6H5 +], 41(12) [C3H5 +]. C11H13BrO (241.1) calc. C 54.80 H 5.85 found C 54.51 H 5.31. Separation of diastereomers 6c and 6d was achieved by column chromatography [SiO2, petroleum ether/Et2O, 1:2 (v/v)]. (2S,3S,5S)-5-Bromomethyl-3-hydroxy-2-methyltetra-hydrofuran (6c): Rf = 0.50 (petroleum ether/Et2O, 1:2 (v/v); [α]D 25 = -7.3 (c = 0.8, CHCl3); 1H NMR (250 MHz): δ = 1.30 (d, 3 H, 3 J = 6.4 Hz, 6-H), 1.83 (s, 1 H, OH), 1.88 (ddd, 1 H, 3 J = 1.3, 4.9 Hz, 2 J = 14.3 Hz, 4-H), 2.41 (ddd, 1 H, 3 J = 6.0, 8.9 Hz, 2 J = 14.3 Hz, 4-H), 3.50 (dd, 1 H, 3 J = 4.6 Hz, 2 J = 10.4 Hz, -H), 3.61 (dd, 1 H, 3 J = 5.3 Hz, 2 J = 10.4 Hz, -H), 3.86 (qd, 1 H, 3 J d = 3.1 Hz, 3 J q = 6.4 Hz, 2-H), 4.10-4.23 (m, 2 H, 3-H, 5-H); 13C NMR (CDCl3, 63 MHz): δ = 13.9, 36.7, 39.8, 73.3, 76.4, 79.8. (2S,3S,5R)-5-Bromomethyl-3-hydroxy-2-methyltetrahydrofuran (6d): Rf = 0.45 (petroleum ether/ Et2O, 1:2 (v/v)); [α]D 25 = -21.8 (c = 1.0, CHCl3); 1H NMR (250 MHz): δ = 1.26 (d, 3 H, 3 J = 6.4 Hz, 6-H), 1.69 (s, 1 H, OH), 1.88 (ddd, 1 H, 3 J = 4.7, 9.2 Hz, 2 J = 13.8 Hz, 4-H), 2.20 (ddd, 1 H, 3 J = 1.2, 6.7 Hz, 2 J = 13.8 Hz, 4-H), 3.456 (d, 1 H, 3 J = 5.7 Hz, -H), 3.458 (d, 1 H, 3 J = 5.0 Hz, -H), 4.12 (qd, 1 H, 3 J d = 2.8 Hz, 3 J q = 6.4 Hz, 2-H), 4.24 (mc, 1 H, 3-H) 4.41-4.53 (m, 1 H, 5-H); 13C NMR (CDCl3, 63 MHz): δ = 14.1, 36.5, 40.5, 74.2, 76.1, 79.0.Ee values for trisubstituted tetrahydrofurans 6a-d were determined for their derived (R)-configured Mosher esters. Samples which contained the enantiomers of 6a-d in excess were available from a previous study: Hartung J. Kneuer R. Eur J. Org. Chem.  2000,  1677 
  • 29 Dale JA. Dull DL. Mosher HS. J. Org. Chem.  1969,  34:  2543 
  • 30 Kirby AJ. In The Anomeric Effect and Related Stereoelectronic Effects at Oxygen   Springer-Verlag; Berlin: 1983. 
  • 32 An optical rotation of [α]D 25 ≥ 0° has been reported for enantiopure (+)-epiallo-muscarine(1d): De Amici M. De Micheli C. Moteni G. Pitrè D. Carrea G. Riva S. Spezia S. Zetta L. J. Org. Chem.  1991,  56:  67 ; this value was confirmed by us in an independent study using enantiopure 1d. The origin for the significant positive [α]D 25 for the enantioenriched sample which was prepared in the present study using the AD bromocycloetherification sequence is unclear
17

(Z)-1,4-Hexadiene(2) (Fluka) (E)-1,4-hexadiene(4) (Chemsampco) are commercially available and were used as recieved.

20

R f values of hexenediols (SiO2, Et2O): 0.61 for (2S,3R)-5-hexene-2,3-diol(3), [19] 0.59 for (2S,3S)-5-hexene-2,3-diol(5), [19] 0.69 for (Z)-4-hexene-1,2-diol and for (E)-4-hexene-1,2-diol. Ee values of diols 3 and 5 were determined by GC on a β-Dex-325 column (Supelco).

25

Hartung, J.; Greb, M.; pehar, K.; Köhler, F.; Kluge, M.; Csuk, R. in preparation.

31

Analytical data (1H NMR and 13C NMR in D2O) obtained for alkaloids 1a-d matched with the values reported in the literature; [10-13] 1a: 40% ee; [α]D 25 = +6.0° (c = 1.0, EtOH); 1b: 40% ee; [α]D 25 = -13.1° (c = 1.9, EtOH); 1c: 90% ee; [α]D 25 = +19.8° (c = 0.9, EtOH); 1d: 90% ee; [α]D 25 = +14.6° (c = 2.2, EtOH). [32]