RSS-Feed abonnieren
DOI: 10.1055/s-2003-36220
Synthetic Approach to Pondaplin and Highly Strained Ansa Macrolides: The Dramatic Influence of a Fluorine Atom on the Efficiency of Ring-Closing Metathesis
Publikationsverlauf
Publikationsdatum:
18. Dezember 2002 (online)

Abstract
Ring-closing metathesis has been applied to the synthesis of extremely rigid 13 to 16 membered ring lactones starting from alkenyl p-(O-allyl)cinnamates and p-(O-allyl)dihydrocinnamates. The core structure of pondaplin, a natural ansa macrolide has been prepared starting from a fluoro derivative. The presence of this atom seems to have a crucial role on the success of the RCM.
Key words
macrocycles - metathesis - ring closure - fluorine - ruthenium
- 1a 
             
            Norcross RD.Paterson I. Chem. Rev. 1995, 95: 2041
- 1b 
             
            Ishibashi M.Kobayashi J. Heterocycles 1997, 44: 543
- 2 
             
            Liu X.-X.Pilarinou E.McLaughlin JL. Tetrahedron Lett. 1999, 40: 399
- For other natural occurring ansa macrolides and macrolactams, see:
- 3a 
             
            Wilson KE.Tsou NN.Guan Z.Ruby CL.Pelaez F.Gorrochategui J.Vicente F.Onishi HR. Tetrahedron Lett. 2000, 41: 8705
- 3b 
             
            De Boer C.Meulman PA.Wnuk RJ.Peterson DH. J. Antibiot. 1970, 23: 442
- 3c 
             
            Sasaki K.Rinehart KJ.Slomp G.Grostic MF.Olson EC. J. Am. Chem. Soc. 1970, 92: 7591
- 4a 
             
            Ioset J.-R.Marston A.Gupta MP.Hostettmann K. J. Nat. Prod. 2000, 63: 424
- 4b 
             
            Ngadjui BT.Dongo E.Happi EN.Bezabih M.-T.Abegaz BM. Phytochemistry 1998, 48: 733
- 5a 
             
            Trnka TM.Grubbs RH. Acc. Chem. Res. 2001, 31: 18
- 5b 
             
            Fürstner A. Angew. Chem. Int. Ed. 2000, 39: 3012
- 5c 
             
            Grubbs RH.Chang S. Tetrahedron 1998, 54: 4413
- 5d 
             
            Armstrong SK. J. Chem. Soc., Perkin Trans. 1 1998, 371
- 5e 
             
            Schuster M.Blechert S. Angew. Chem., Int. Ed. Engl. 1997, 36: 2036
- 6a 
             
            Fürstner A.Langemann K. J. Org. Chem. 1996, 61: 3942
- 6b 
             
            Goldring WPD.Hodder AS.Weiler L. Tetrahedron Lett. 1998, 39: 4955
- 6c 
             
            Wagner J.Cabrejas LMM.Grossmith CE.Papageorgiou C.Senia F.Wagner D.France J.Nolan SP. J. Org. Chem. 2000, 65: 9255
- 6d 
             
            Fürstner A.Thiel OR.Ackermann L. Org. Lett. 2001, 3: 449
- 6e 
             
            Fürstner A.Dierkes T.Thiel OR.Blanda G. Chem.-Eur. J. 2001, 7: 5286
- 7a 
             
            Boger DL.Hong J.-Y. J. Am. Chem. Soc. 2001, 123: 8515
- 7b 
             
            Fürstner A.Gastner T.Weintritt H. J. Org. Chem. 1999, 64: 2361
- 7c 
             
            Martin SF.Humphrey JM.Ali A.Hillier MC. J. Am. Chem. Soc. 1999, 121: 866
- 8a 
             
            Nicolaou KC.Vassilikogiannakis G.Montagnon T. Angew. Chem. Int. Ed. 2002, 41: 3276
- 8b 
             
            Bach T.Lemarchand A. Synlett 2002, 1302
- For recent applications of RCM to paracyclophane synthesis:
- 9a 
             
            Smith AB.Adams CM.Kozmin SA.Paone DV. J. Am. Chem. Soc. 2001, 123: 5925Reference Ris Wihthout Link
- 9b 
             
            Layton ME.Morales CA.Shair MD. J. Am. Chem. Soc. 2002, 124: 773Reference Ris Wihthout Link
- 10 
             
            Barrow RA.Hemscheidt T.Liang J.Paik S.Moore RE.Tius MA. J. Am. Chem. Soc. 1995, 117: 2479
- 11 
             
            Neises B.Steglich W. Angew. Chem., Int. Ed. Engl. 1978, 17: 522
- 13a 
             
            Fürstner A.Langemann K. Synthesis 1997, 792
- 13b 
             
            Fürstner A.Langemann K. J. Am. Chem. Soc. 1997, 119: 9130
- 14 
             
            Paquette LA.Méndez-Andino J. Tetrahedron Lett. 2001, 42: 967
- 15 
             
            Still WC.Gennari C. Tetrahedron Lett. 1983, 24: 4405
- 16a 
             
            Iwabuchi Y.Hatakeyama S. J. Synth. Org. Chem. Jpn. 2002, 60: 2
- 16b 
             
            Basavaiah D.Rao PD.Hyma RS. Tetrahedron 1996, 52: 8001
- 17 
             
            Davies SG.Smethurst CAP.Smith AD.Smyth GD. Tetrahedron: Asymmetry 2000, 11: 2437
- 18a 
             
            Etemad-Moghadam G.Seyden-Penne J. Bull. Soc. Chim. Fr. 1985, 448
- 18b 
             
            Bargiggia F.Dos Santos S.Piva O. Synthesis 2002, 427
- 20a 
             
            Crowe WE.Goldberg DR. J. Am. Chem. Soc. 1995, 117: 5162
- 20b 
             
            Kirckland TA.Grubbs RH. J. Org. Chem. 1997, 62: 7310
- 21 
             
            Basu K.Cabral JA.Paquette LA. Tetrahedron Lett. 2002, 43: 5453
References
Typical Procedure for Conversion of Ester 6d to 8d: A 10-2 M solution of ester 6d (0.261g, 1 mmol) in CH2Cl2 (100 mL) was first bubbled with a dry nitrogen stream. Catalyst 7b (43 mg, 0.05 mmol) was next added at r.t. and the solution was heated to reflux for 24 h. After cooling to r.t. and concentration under vacuum, the crude mixture was purified by flash-chromatography on silica (EtOAc/PE = 20:80) to give compound 8d (0.154g, 0.59 mmol).
19
         Selective Data 
            for Compounds: 6d: 1H NMR (300 MHz, CDCl3): δ = 1.43 
         (quint, J = 7.3 
         Hz, 2 H), 1.63 (quint, J = 7.3 
         Hz, 2 H), 2.08 (q, J = 7.3 
         Hz, 2 H), 2.61 (t, J = 7.7 Hz, 
         2 H), 2.90 (t, J = 7.7 
         Hz, 2 H), 4.07 (t, J = 6.6 
         Hz, 2 H), 4.51 (d, J = 5.8 
         Hz, 2 H), 5.00 (m, 2 H), 5.29 (d, J = 10.3 Hz, 1 H), 5.42 
         (d, J = 17.2 
         Hz, 1 H), 5.80 (ddt, J = 10.3, 
         17.0 and 6.6 Hz, 1 H), 6.06 (ddt, J = 10.3, 
         17.2 and 5.8 Hz, 1 H), 6.85 (d, J = 8.1 Hz, 2 H), 7.12 
         (d, J = 8.1 
         Hz, 2 H). 13C NMR (75 MHz, CDCl3)δ = 173.4, 
         157.5, 133.2, 138.7, 133.8, 129.6, 117.9, 115.6, 115.1, 69.2, 64.7, 
         36.6, 33.7, 30.6, 28.4, 25.6. IR: νC=O = 1734 
         cm-1. HRMS: Calcd for C18H24O3: 288.17255. 
         Found: 288.17262. (
         Z
         )-14c: 1H NMR (300 
         MHz, CDCl3): δ = 1.45 
         (quint, J = 7.7 
         Hz, 2 H), 1.67 (quint, J = 7.7 
         Hz, 2 H), 2.08 (quint, J = 7.7 
         Hz, 2 H), 4.13 (t, J = 6.6 Hz, 
         2 H), 4.58 (d, J = 5.2 
         Hz, 2 H), 5.00 (m, 2 H), 5.30 (dd, J = 1.1 
         and 10.8 Hz, 1 H), 5.42 (dd, J = 1.1 
         and 16.5 Hz, 1 H), 5.79 (ddt, J = 10.0, 
         17.0 and 6.8 Hz, 1 H), 5.83 (d, J = 12.8 
         Hz, 1 H), 6.06 (ddt, J = 10.8, 
         16.5 and 5.2 Hz, 1 H), 6.85 (d, J = 12.8 
         Hz, 1 H), 6.89 (d, J = 8.7 Hz, 2 H), 7.68 
         (d, J = 8.7 
         Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 166.9, 159.8, 
         143.6, 138.8, 133.4, 132.5, 127.9, 118.4, 117.7, 115.2, 114.5, 69.1, 
         64.6, 33.7, 28.5, 25.6. IR: νC=O = 1714 cm-1. (
         E
         )-18: 1H NMR (300 MHz, 
         CDCl3): δ = 4.57 
         (dt, J = 1.5 
         and 5.3 Hz, 2 H), 4.73 (dt, J = 1.3 
         and 5.6 Hz, 2 H), 5.36 (m, 4 H), 5.93 (ddt, J = 11.5, 
         17.3 and 5.6 Hz, 1 H), 6.07 (ddt, J = 10.5, 
         17.2 and 5.3 Hz, 1 H), 6.85 (d, J = 23.5 
         Hz, 1 H), 6.87 (d, J = 8.7 Hz, 2 H), 7.52 
         (d, J = 8.7 
         Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 160.8 
         (d, J
         C-F = 36 
         Hz), 159.6, 145.9 (d, J
         C-F = 252 
         Hz), 133.4, 132.1, 131.6, 123.4 (d,
         J
         C-F = 9 
         Hz), 122.8 (d, J
         C-F = 27 
         Hz), 119.5, 118.2, 114.7, 69.1, 66.3. 19F NMR 
         (CDCl3): δ = -119.6 
         (d, J = 23 
         Hz). IR: νC=O = 1728 
         cm-1. HRMS for C15H15O3F: 
         Calcd: 263.10830. Found: 263.10826. 8d: 1H 
         NMR (300 MHz, CDCl3): δ = 0.85 
         (m, 2 H), 1.12 (m, 2 H), 1.98 (q, J = 6.7 
         Hz, 2 H), 2.58 (t, J = 6.6 
         Hz, 2 H), 2.90 (t, J = 6.6 
         Hz, 2 H), 3.92 (t, J = 7.0 
         Hz, 2 H), 4.63 (d, J = 6.0 
         Hz, 2 H), 5.31 (dt, J = 6.0 and 
         15.5 Hz, 1 H), 5.38 (dt, J = 6.0 
         and 15.5 Hz, 1 H), 6.81 (d, J = 8.5 
         Hz, 2 H), 7.07 (d, J = 8.5 
         Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 173.2, 
         155.9, 137.5, 133.3, 129.9, 126.3, 119.2, 69.9, 64.0, 37.2, 32.2, 
         31.7, 28.4, 25.3. IR: νC=O = 1728 
         cm-1. HRMS for C16H18O3: 
         Calcd: 260.14125. Found: 260.14114. 15c: 1H 
         NMR (500 MHz, CDCl3): δ = 1.15 
         (s, 2 H), 1.95 (s, 2 H), 3.94 (t, J = 6.0 
         Hz, 2 H), 4.70 (d, J = 6.3 
         Hz, 2 H), 5.28 (dt, J = 8.0 
         and 15.3 Hz, 1 H), 5.46 (dt, J = 8.0 
         and 15.3 Hz, 1 H), 5.89 (d, J = 8.0 
         Hz, 1 H), 6.88 (d, J = 8.5 
         Hz, 2 H), 7.10 (d, J = 8.0 
         Hz, 1 H), 7.11 (d, J = 8.5 Hz, 
         2H). 13C NMR (75 MHz, CDCl3): δ = 167.9, 
         157.7, 142.0, 138.5, 131.9, 129.3, 126.1, 122.5, 118.8, 70.0, 65.3, 32.3, 
         26.9, 26.1. IR: νC=O = 1702 
         cm-1. 19: 1H 
         NMR (500 MHz, CDCl3): δ = 4.31 
         (d, J = 5.0 
         Hz, 2 H), 4.65 (d, J = 5 Hz, 
         2 H), 5.43 (dt, J = 5.0 
         and 16.0 Hz, 1 H), 5.68 (dt, J = 5.0 and 
         16.0 Hz, 1 H), 7.03 (d, J
         C-F = 19.6 
         Hz, 1 H), 6.87 (d, J = 8.5 
         Hz, 2 H), 7.22 (d, J = 8.5 
         Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 160.8 
         (d, J
         C-F = 40 
         Hz), 159.1, 147.3 (d, J
         C-F = 245 
         Hz), 131.0, 128.9, 125.7, 124.5 (d, J
         C-F = 9 
         Hz), 121.2 (d, J
         C-F = 26 
         Hz), 114.5, 67.7, 65.4. 19F NMR (CDCl3): δ = -118.6 
         (d, J = 19.6 
         Hz). IR: νC=O = 1725 
         cm-1. HRMS: Calcd: 235.0770. Found: 
         235.07686. Dimers 20: HRMS: Calcd: 497.17756. 
         Found: 497.17785.
 
    