Synlett 2002(10): 1683-1687
DOI: 10.1055/s-2002-34242
LETTER
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Synthesis of a Highly Preorganised 2′-Deoxy-spiro-nucleoside

Sebastian Wendeborn*, Gregory Binot, Mafalda Nina, Tammo Winkler
Syngenta AG, CH-4002 Basel, Switzerland
Fax: +41(61)3235500; e-Mail: sebastian.wendeborn@syngenta.com;
Further Information

Publication History

Received 14 August 2002
Publication Date:
23 September 2002 (online)

Abstract

The synthesis of a novel spiro-nucleotide, in which the C(4′) and the C(5′) of a nucleotide are connected by an additional ethylene bridge, is reported. The γ-torsional angle of the resulting novel nucleotides is in the region of the one observed in natural double stranded DNA.

    References

  • 1a Obika S. Nanbu D. Hari Y. Morio K. In Y. Ishida T. Imanishi T. Tetrahedron Lett.  1997,  38:  8735 
  • 1b Wengel J. Acc. Chem. Res.  1999,  32:  301 
  • 1c Tarköy M. Bolli M. Leumann C. Helv. Chim. Acta  1994,  77:  716 
  • 1d Tarköy M. Bolli M. Schweizer B. Leumann C. Helv. Chim. Acta  1993,  76:  481 
  • 2a Meldgaard M. Wengel J. J. Chem. Soc., Perkin Trans. 1  2000,  3539 
  • 2b Herdewijn P. Liebigs Ann. Chem.  1996,  1337 
  • 3 Berman HM. Olson WK. Beveridge DL. Westbrook J. Gelbin A. Demeny T. Hsieh S.-H. Srinivasan AR. Schneider B. Biophys. J.  1992,  63:  751 
  • 4 Foloppe N. MacKerell AD. J. Phys. Chem. B.  1999,  103:  10955 
  • 5a De Mesmaeker A. Häner R. Martin P. Moser H. Acc. Chem. Res.  1995,  28:  366 
  • 5b Freier SM. Altmann K.-H. Nucleic Acids Res.  1997,  25:  4429 
  • 6a Rice MC. May GD. Kipp PB. Parekh H. Kmiec EB. Plant Physiology  2000,  123:  427 
  • 6b Cole-Strauss A. Yoon K. Xiang Y. Byrne BC. Rice MC. Gryn J. Holloman WK. Kmiec EB. Science  1996,  273:  1386 
  • 6c Zhu T. Peterson DJ. Tagliani L. St. Clair G. Baszczynski CL. Bowen B. Proc. Natl. Acad. Sci. U.S.A.  1999,  96:  8768 
  • 6d Beetham PR. Kipp PB. Sawycky XL. Arntzen CJ. May GD. Proc. Natl. Acad. Sci. U.S.A.  1999,  96:  8774 
  • 7a Paquette LA. Bibart RT. Seekamp CK. Kahane AL. Org. Lett.  2001,  3:  4039 
  • 7b Paquette LA. Owen DR. Bibart RT. Seekamp CK. Org. Lett.  2001,  3:  4043 
  • 8 Niedballa U. Vorbrüggen H. J. Org. Chem.  1974,  39:  3654 
  • 10a Becker H. Soler MA. Sharpless KB. Tetrahedron  1995,  51:  1345 
  • 10b Allevi P. Tarocco G. Longo A. Anastasia M. Cajone F. Tetrahedron: Asymmetry  1997,  8:  1315 
  • 13 Literature precedent in a related system suggested that NaBH4 would result in chemoselective reduction of the epoxide at C(2′) along with reduction of the lactone to the lactol. Inspection of the 13C NMR data presented by the authors, however, indicates that their results were misinterpreted: Ortuno RM. Cardellach J. Font J. J. Heterocycl. Chem.  1987,  24:  79 
  • 14 Fazio F. Schneider MP. Tetrahedron: Asymmetry  2000,  11:  1869 
  • 15 Fleming I. Henning R. Parker DC. Plaut HE. Sanderson PEJ. J. Chem. Soc., Perkin Trans. 1  1995,  317 
  • 17 Hehre WJ. Yu J. Klunzinger PE. Lou L. Spartan   Wavefunction, Inc.; Irvine, CA: 1991. 
  • 18 Grzeskowiak K. Yanagi K. Prive GG. Dickerson RE. J. Biol. Chem.  1991,  266:  8861 
9

This ee is not sufficient for incorporation of the prepared nucleosides into oligonucleotides.

11

Ee’s were determined by chiral HPLC (Chiralcel OD-H); for analytical purpose, the enantiomer of 4 was prepared with β-AD-mix.

12

Ee of 9 was not determined.

16

: 1H NMR (500 MHz, CDCl3): δ = 7.95 (b, 1 H, NH), 7.74 (q, J = 1.0 Hz, 1 H, H-6), 6.38 (dd, J = 8.3 and 1.8 Hz, 1 H, H-1′), 4.09 (d, J = 5.3 Hz, 1 H, H-3′), 3.78 (dd, J = 9.4 and 7.3 Hz, 1 H, H-5′), 2.85 (ddd, J = 14.4, 8.3 and 5.3 Hz, 1 H, H-2′β), 1.92 [d, J = 1.0 Hz, 3 H, CH3-C(5)], 1.83 (dd, J = 14.4 and 1.8 Hz, 1 H, H-2’α), 1.5-2.1 (m, 6 H, H-6′, H-7′,
H-8′), 0.97 (m, 18 H, CH 3 CH2Si), 0.62 (m, 12 H, CH3 CH 2 Si). The configuration of C-1′ was established by NOE: Both H-1′ and H-3′ show a strong NOE with H-2′β. No NOE was observed between H-3′ and H-6. Furthermore, a strong NOE was observed between H-3′ and H-5′ proving the configuration of C-3′ and C-5′ given in Scheme [4] . 13C NMR (125 MHz, CDCl3, as obtained from the HSQC and HMBC spectra): δ = 163.7 (C-4), 150.3 (C-2), 137.6 (C-6), 109.7 (C-5), 97.8 (C-4′), 85.5 (C-1′), 78.3 (C-5′), 75.6 (C-3′), 42.9 (C-2′), 31.9 and 29.4 (C-8′ and C-6′), 17.9 (C-7′), 12.4 (CH3-C-5), 6.7 (CH 3 CH2Si), 4.9 (CH3 CH 2 Si). ESI-MS: 511 (M + H+); 509 (M - H+).
: 1H NMR (500 MHz, CDCl3): δ = 8.01 (b, 1 H, NH), 8.00 (q, J = 1.0 Hz, 1 H, H-6), 6.28 (dd, J = 7.8 and 5.5 Hz, 1 H, H-1′), 4.23 (dd, J = 5.6 and 3.0 Hz, 1 H, H-3′), 3.91 (dd, J = 9.5 and 8.3 Hz, 1 H, H-5′), 2.25 (ddd, J = 12.9, 5.5 and 3.0 Hz, 1 H, H-2′α), 2.11 (ddd, J = 12.9, 7.8 and 5.6 Hz, 1 H,
H-2′β), 1.94 [d, J = 1.0 Hz, 3 H, CH3-C(5)], 1.5-2.1 (m, 6 H, H-6′, H-7′, H-8′), 0.97 (m, 18 H, CH 3 CH2Si), 0.62 (m, 12 H, CH3 CH 2 Si). The configuration of C-1′ was established by NOE: H-1′ shows a strong NOE with H-2′α, and H-3′ a strong NOE with H-2′β. A weak NOE was observed between H-3′ and H-6. Furthermore, a strong NOE was observed between H-3′ and H-5′ proving the configuration of C-3′ and C-5′ given in Scheme [4] . 13C NMR (125 MHz, CDCl3, as obtained from the HSQC and HMBC spectra):
δ = 163.7 (C-4), 150.3 (C-2), 136.6 (C-6), 109.7 (C-5), 95.7 (C-4′), 84.4 (C-1′), 76.9 (C-5′), 74.4 (C-3′), 41.8 (C-2′), 31.4 and 29.2 (C-8′ and C-6′), 17.8 (C-7′), 12.4 (CH 3 -C-5), 6.7 (CH 3 CH2Si), 4.9 (CH3 CH 2 Si). ESI-MS: 511(M + H+); 509 (M - H+).