Subscribe to RSS
DOI: 10.1055/s-2002-34232
Highly Efficient Asymmetric Access to 1-Azaspiro[4.4]nonane Skeleton
Publication History
Publication Date:
23 September 2002 (online)

Abstract
Vinylogous Mukaiyama aldol type reaction of chiral non-racemic silyloxypyrroles followed by acidic treatment affords an efficient asymmetric access to 1-azaspiro[4.4]nonanes in high diastereoisomeric excess (up to 79%).
Keys words
spiro compounds - asymmetric synthesis - ring expansion - rearrangement - pyrroles
- 1a 
             
            Boivin J.Yousfi M.Zard S. Tetrahedron Lett. 1997, 38: 5985
- 1b 
             
            Denmark SE.Middleton DS. J. Org. Chem. 1998, 63: 1604
- 1c 
             
            Kende AS.Hernando JI.Milbank JBJ. Org. Lett. 2001, 3: 2505
- 1d 
             
            Doan HD.Goré J.Vatèle J.-M. Tetrahedron Lett. 1999, 40: 6765
- 1e 
             
            Bailey PD.Morgan KM.Smith DI.Vernon JM. Tetrahedron Lett. 1994, 35: 7115
- 1f 
             
            Braun NA.Ciufolini MA.Peters K.Peters E.-M. Tetrahedron Lett. 1998, 39: 4667
- 1g 
             
            Tietze LF.Steck PL. Eur. J. Org. Chem. 2001, 4353
- 2a 
             
            Baussanne I.Chiaroni A.Husson H.-P.Riche C.Royer J. Tetrahedron Lett. 1994, 35: 3931
- 2b 
             
            Baussanne I.Royer J. Tetrahedron Lett. 1996, 37: 1213
- 2c 
             
            Baussanne I.Royer J. Tetrahedron Lett. 1998, 39: 845
- 2d 
             
            Dudot B.Micouin L.Baussanne I.Royer J. Synthesis 1999, 688
- 2e 
             
            Baussanne I.Travers C.Royer J. Tetrahedron: Asymmetry 1998, 9: 797
- 2f 
             
            Baussanne I.Chiaroni A.Royer J. Tetrahedron: Asymmetry 2001, 12: 1219
- 3a 
             
            Paquette LA.Negri JT.Rogers RD. J. Org. Chem. 1992, 57: 3947
- 3b 
             
            Paquette LA.Lanter JC.Jonhston JN. J. Org. Chem. 1997, 62: 1702
- 3c 
             
            Paquette LA.Kiney MJ.Dullweber U. J. Org. Chem. 1997, 62: 1713
- 4 
             
            Fenster MDE.Patrick BO.Dake GR. Org. Lett. 2001, 3: 2109
- 7a 
             
            Kuehne ME.Matson PA.Bornmann WG. J. Org. Chem. 1991, 56: 513
- 7b 
             
            Ishibashi H.Fuke Y.Yamashita T.Ikeda M. Tetrahedron: Asymmetry 1998, 9: 797
- 9a 
             
            Kawasaki K.Kastsuki T. Tetrahedron 1997, 53: 6337
- 9b 
             
            Reddy KL.Dress KR.Sharpless KB. Tetrahedron Lett. 1998, 39: 3667
- 9c 
             
            Takacs JM.Jaber MR.Vellekoop AS. J. Org. Chem. 1998, 63: 2742
- 10 
             
            Kukolja S.Draheim SE.Pfeil JL.Cooper RDG.Graves BJ.Holmes RE.Neel DA.Huffman GW.Webber JA.Kinnick MD.Vasileff RT.Foster BJ. J. Med. Chem. 1985, 28: 1886
- 11 
             
            Meyers AI.Pointdexter GS.Birch Z. J. Org. Chem. 1978, 43: 892
- 12 For a review about the memory of 
            chirality:  
            Fuji K.Kawabata T. Chem.-Eur. J. 1998, 4: 373
- 13 
             
            Baussanne I.Schwardt O.Royer J.Pichon M.Figadère B.Cavé A. Tetrahedron Lett. 1997, 39: 845
- 14 
             
            Nagasaka T.Sato H.Seaki S.-I. Tetrahedron: Asymmetry 1997, 8: 191
References
         Typical Procedure 
            for Silyloxypyrroles 5.
         
To a solution of 2,5-dimethoxy-2,5-dihydrofuran 
         (1 equiv) and chiral amine 4a,c-e (1 
         equiv) in water (0.25 M) was added a concd solution of HCl (1.5 
         equiv). The mixture was stirred at r.t. for 3 h then neutralized 
         with solid NaHCO3 and extract with CH2Cl2. 
         The combined organic layers were dried over MgSO4 and 
         the solvent distilled off. A red oil, mixture of the α,β and β,γ unsaturated 
         lactams was then obtained. tert-Butyldimethylsilyl 
         triflate (1 equiv) was slowly added to a solution of either the 
         crude product or the purified lactams (1 equiv) and NEt3 (2 
         equiv) in CH2Cl2 (0.1 M) and the mixture was 
         stirred at r.t. for 1 h. The solvent was evaporated under vacuum 
         and the residue purified by filtration on a pad of alumina with 
         a mixture of heptane and EtOAc. (Nota: silyloxypyrroles are used 
         to be kept under argon at -20 °C). Analyses for 5d: [α]D
         25 +11.7 
         (c 0.69, CH2Cl2). 
         Mp = 97 °C (heptane-EtOAc). 
         IR (KBr): ν = 2929, 2858, 1560, 
         1492, 1438 cm-1. 1H 
         NMR (300 MHz, CDCl3): δ = -0.05 
         (s, 3 H), 0.23 (s, 3 H), 0.80 (s, 9 H), 1.89 (d, J = 7.0 
         Hz, 3 H), 5.31 (dd, J = 2.0, 
         3.6 Hz, 1 H), 6.01 (t, J = 3.5 
         Hz, 1 H), 6.16 (q, J = 7.0 
         Hz, 1 H), 6.35 (dd, J = 1.9, 3.4 
         Hz, 1 H), 7.10 (d, J = 7.2 
         Hz, 1 H), 7.42 (t, J = 7.9 
         Hz,
1 H), 7.50-7.55 (m, 2 H), 7.77 (d, J = 8.3 Hz, 
         1 H), 7.88 (d, J = 7.4 
         Hz, 1 H), 8.08 (d, J = 8.0 
         Hz, 1 H). 13C NMR
(75 MHz, 
         CDCl3): δ = -5.0, -4.6, 
         18.2, 21.4, 25.7, 49.5, 87.7, 105.2, 109.8, 123.2, 125.8, 126.5, 
         128.1, 129.1, 131.0, 134.1, 139.7, 142.2. HRMS (CI, NH3): m/z calcd for C22H30NOSi 
         (MH+): 352.2097. Found: 352.2101. Typical Procedure for Cyclobutanols 6. To 
         a solution of silyloxypyrrole 5a-e (1 equiv) in anhyd CH2Cl2 (0.15 
         M) with 3Å MS, under argon, was added cyclobutanone (or cyclopentanone) 
         (1.6 equiv). After 15 min at r.t., the solution was cooled at -78 °C 
         and BF3·OEt2 (1.5 equiv) was added 
         in the course of 15 min. The solution was stirred at -78 °C 
         for 2 h and allowed to warm to 0 °C. The reaction 
         was quenched by addition of H2O, the aq phase was separated 
         and extracted with CH2Cl2. The organic phases 
         were combined, dried over Na2SO4 and the solvent 
         was removed under vacuum. The resulting oil was purified by flash 
         chromatography. 
         Analyses for 6d: Minor 
            diastereoisomer: [α]D
         25 -264.1 
         (c 0.52, CHCl3). Mp = 245 °C 
         (CH2Cl2). IR (KBr): ν = 3388, 2976, 
         2937, 1660 cm-1. MS (CI, NH3): m/z = 308 
         (MH+), 238 (MH+ - C4H6O). 1H 
         NMR (300 MHz, CDCl3): δ = 0.35-0.5 
         (m, 1 H), 1.01 (s, 1 H, D2O exch.), 1.35-1.55 
         (m, 2 H), 1.55-1.70 (m, 2 H), 1.78 (d, J = 7.1 
         Hz, 3 H), 1.85-2.00 (m,
1 H), 4.25 (t, J = 1.6 Hz, 
         1 H), 6.30 (m, 2 H), 6.94 (dd, J = 7.0, 
         6.0 Hz, 1 H), 7.40-7.60 (m, 4 H), 7.83 (d, J = 8.1 Hz, 1 
         H), 7.90 (d, J = 8.3 
         Hz, 1 H), 8.23 (d, J = 8.4 
         Hz, 1 H). 13C NMR (75 MHz, DMSO): δ = 17.7, 
         24.4, 36.2, 40.6, 55.1, 74.8, 81.3, 128.5, 130.3, 130.8, 131.7, 
         132.9, 134.3, 134.5, 136.1, 139.0, 143.5, 151.3, 177.6. Major diastereoisomer: [α]D
         25 -13.8 
         (c 0.97, CHCl3). Mp = 196-198 °C 
         (Et2O). IR (KBr): ν = 3382, 
         2977, 2934, 1658, 1394 cm-1. MS (CI, NH3): m/z = 308 
         (MH+), 238 (MH+ - C4H6O). 1H 
         NMR (300 MHz, CDCl3): δ = 1.36 
         (m, 1 H), 1.80-2.10 (m, 5 H), 1.75 (s, 1 H), 1.86 (d, J = 7.0 Hz, 
         3 H), 3.51 (t, J = 1.5 
         Hz, 1 H), 6.07 (q, J = 7.0 
         Hz, 1 H), 6.28 (dd, J = 1.6, 
         6.0 Hz, 1 H), 6.81 (dd, J = 1.8, 
         6.0 Hz, 1 H), 7.47 (m, 3 H), 7.63 (m, 2 H), 7.84 (m, 2 H). 13C 
         NMR (75 MHz, CDCl3): δ = 13.6, 
         19.1,  31.9, 36.2, 49.0, 69.6, 75.9, 123.2, 125.2, 125.8, 126.1, 
         127.3, 128.5, 129.1, 129.2, 132.0, 134.0, 136.2, 145.7, 173.3. Anal. Calcd 
         for C20H21NO2: C, 78.15; H, 6.89; 
         N, 4.56. Found: C, 78.03; H, 7.06; N, 4.60.
The crystal structure has been deposited at the Cambridge Crystallographic Data Centre; deposition number CCDC 180815.
8
         Typical Procedure 
            for Spiro Compounds 7.
         
To a solution of cyclobutanol 6a-e (1 
         equiv) in CH2Cl2 (0.05 M) was added concd 
         aq HCl (1.5 equiv). After 9 h at 0 °C, the solvent 
         was removed under vacuum. The crude product was redissolved twice 
         in CH2Cl2 and reevaporated to eliminate trace 
         amount of acid. 
         Analyses for 7d (cristallyzed 
         from Et2O): [α]D
         25 -48.4
(c 1.04, CHCl3). Mp = 140 °C 
         (Et2O). IR (KBr): ν = 2968, 1750, 
         1679, 1380, 1347, 780 cm-1. MS (CI, 
         NH3): m/z = 308 (MH+). 1H 
         NMR (400 MHz, CDCl3): δ = 1.07-1.17 
         (m, 2 H), 1.34-1.55 (m, 2 H), 1.62 (ddd, J = 6.5, 
         8.5, 12.3 Hz,
1 H), 1.67 (d, J = 7.0 
         Hz, 3 H), 1.87 (ddd, J = 9.5, 
         11.6, 18.9 Hz, 1 H), 1.93 (ddd, J = 6.8, 
         8.9, 12.3 Hz, 1 H), 2.23 (dd, J = 6.1, 
         18.9 Hz, 1 H), 2.43 (dd, J = 6.8, 
         8.5, 16.8 Hz, 1 H), 2.53 (ddd, J = 6.5, 
         8.9, 16.8 Hz, 1 H), 6.25 (q, J = 7.1 
         Hz,
1 H), 7.30-7.60 (m, 4 H), 7.83 (d, J = 9.7 Hz, 
         1 H), 7.79 (d, J = 7.6 
         Hz, 1 H), 8.00 (d, J = 8.3 
         Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 7.8, 
         18.9, 29.0, 31.7, 32.3, 35.7, 47.5, 72.3, 124.0, 125.1, 125.9, 126.3, 
         127.2, 129.1, 129.3, 132.7, 133.9, 136.1, 175.7, 217.0. Anal. Calcd 
         for C20H21NO2: C, 78.15; H, 6.89; 
         N, 4.56. Found: C, 77.96; H, 7.15; N, 4.41.
 
    