RSS-Feed abonnieren
DOI: 10.1055/s-2002-33707
From Amino Acids To 
      Dihydrofurans: Functionalized Allenes in Modern 
Organic 
      Synthesis
Publikationsverlauf
Publikationsdatum:
05. September 2002 (online)

Abstract
In this account, recent accomplishments in the field of target-oriented synthesis involving allenes are summarized. Allenic α-amino acid derivatives 9, which are of interest as possible vitamin B6 decarboxylase inhibitors, were prepared by 1,6-addition of the cyano-Gilman reagent t-Bu2CuLi·LiCN to 2-amino-substituted enynoates 8, and selective deprotection at either the amino or the ester group was realized. 2,5-Dihydrofurans 18 were obtained by cyclization of the corresponding α-hydroxyallenes; for this step, new methods (treatment with hydrogen chloride gas or acidic ion exchange resin; gold(III)-chloride catalysis) were developed. The 2-hydroxy-3,4-dienoates 14 were obtained by diastereoselective oxidation of titanium enolates formed from 3,4-dienoates 12 with dimethyl dioxirane (DMDO), whereas hydroxyallenes 16 were prepared by copper-mediated SN2′-substitution of propargylic epoxides 15.
- 
            1 Introduction 
- 
            2 Synthesis of α-Allenic α-Amino Acids 
- 
            3 Synthesis of 2,5-Dihydrofurans 
- 
            4 Conclusion 
- 
            5 Experimental Section 
Key words
allenes - amino acids - gold catalysis - 2,5-dihydrofurans - organocopper reagents
- 1a 
              The 
            Chemistry of Ketenes Allenes and Related Compounds  
             
            Patai S. Wiley; New York: 1980.Reference Ris Wihthout Link
- 1b 
              The Chemistry 
            of Allenes  
             
            Landor SR. Academic Press; London: 1982.Reference Ris Wihthout Link
- 1c 
             
            Schuster HF.Coppola GM. Allenes in Organic Synthesis Wiley; New York: 1984.Reference Ris Wihthout Link
- 2a 
             
            Review: Zimmer R. Synthesis 1993, 165
- 2b 
             
            Black TG. Tetrahedron 2001, 57: 5263
- 3a 
             
            Krause N. Liebigs Ann. Chem. 1993, 521
- 3b 
             
            Koop U.Handke G.Krause N. Liebigs Ann. Chem. 1996, 1487 ; and literature cited therein
- 4 Review:  
            Zimmer R.Dinesh CU.Nandanan E.Khan FA. Chem. Rev. 2000, 100: 3067
- 5a Enprostil:  
            Gooding OW.Beard CC.Cooper GF.Jackson DY. J. Org. Chem. 1993, 58: 3681
- 5b 
             
            Cooper GF.Wren DL.Jackson DY.Beard CC.Galeazzi E.VanHorn AR.Li TT. J. Org. Chem. 1993, 58: 4280
- 5c 
             
            Ono N.Kawanaka Y.Yoshida Y.Sato F. J. Chem. Soc., Chem. Commun. 1994, 1251
- 5d 
             
            Lee YS.Nam KH.Jung SH.Park H. Synthesis 1994, 792
- 5e  Allenic nucleoside analogues:  
            Zemlicka J. In Nucleosides and Nucleotides as Antitumor and Antiviral Nucleoside AnaloguesChu CK.Baker DC. Plenum; New York: 1993. p.73-100
- 5f 
             
            Jones BCNM.Silverton JV.Simons C.Megati S.Nishimura H.Maeda Y.Mitsuya H.Zemlicka J. J. Med. Chem. 1995, 38: 1397
- 5g 
             
            Zemlicka J. Nucleosides Nucleotides 1997, 16: 1003
- 5h Allenic isocarbacyclin 
            analogues:  
            Mikami K.Yoshida A.Matsumoto Y. Tetrahedron Lett. 1996, 37: 8515
- Some selected examples:
- 6a 
             
            Yamono Y.Ito M. J. Chem. Soc., Perkin. Trans. 1 1993, 1599
- 6b 
             
            Evans PA.Murthy VS.Roseman JD.Rheingold AL. Angew. Chem. Int. Ed. 1999, 38: 3175 ; Angew. Chem. 1999, 111, 3370
- 6c 
             
            VanBrunt MP.Standaert RF. Org. Lett. 2000, 2: 705
- 6d 
             
            Crimmins MT.Emmitte KA. J. Am. Chem. Soc. 2001, 123: 1533
- 7a 
             
            Krause N.Gerold A. Angew. Chem., Int. Ed. Engl. 1997, 36: 186 ; Angew. Chem. 1997, 109, 194
- 7b 
             
            Krause N.Thorand S. Inorg. Chim. Acta 1999, 296: 1
- 7c 
             
            Krause N.Zelder C. In The Chemistry of Dienes and Polyenes Vol. 2:Rappoport Z. Wiley; New York: 2000. p.645-691
- 7d 
             
            Krause N.Hoffmann-Röder A. In Modern Organocopper ChemistryKrause N. Wiley-VCH; Weinheim: 2002. p.145-166
- 8a 
             
            Rando RR. Science 1974, 185: 320
- 8b 
             
            Walsh C. Tetrahedron 1982, 38: 871
- 9 
             
            Castelhano AL.Pliura DH.Taylor GJ.Hsieh KC.Krantz A. J. Am. Chem. Soc. 1984, 106: 2734
- 10 
             
            Chilton WS.Tsou G.Kirk L.Benedict RG. Tetrahedron Lett. 1968, 6283
- 11a 
             
            Dunn MJ.Jackson RFW.Pietruszka J.Wishart N.Ellis D.Wythes MJ. Synlett 1993, 499
- 11b 
             
            Hunter C.Jackson RFW.Rami HK. J. Chem. Soc., Perkin Trans. 1 2001, 1349
- 12 
             
            Cazes B.Djahanbini D.Goré J.Genêt J.-P.Gaudin J.-M. Synthesis 1988, 983
- 13 
             
            Castelhano AL.Horne S.Taylor GJ.Billedeau R.Krantz A. Tetrahedron 1988, 44: 5451
- 14a 
             
            Kazmaier U.Görbitz CH. Synthesis 1996, 1489
- 14b 
             
            Kazmaier U. Liebigs Ann. Recl. 1997, 285
- 15a 
             
            Evans DA.Britton TC. J. Am. Chem. Soc. 1987, 109: 6881
- 15b 
             
            Evans DA.Britton TC.Ellman JA.Dorow RL. J. Am. Chem. Soc. 1990, 112: 4011
- 16a 
             
            Mitsunobu O. Synthesis 1981, 1
- 16b 
             
            Hughes DL. Org. React. 1992, 42: 335
- 16c 
             
            Thompson AS.Humphrey GR.DeMarco AM.Mathre DJ.Grabowski EJJ. J. Org. Chem. 1993, 58: 5886
- 17 
             
            Canisius J. Ph.D. Thesis Dortmund University; Germany: 2000.Reference Ris Wihthout Link
- 18a 
             
            Wadsworth WS. Org. React. 1978, 25: 73
- 18b 
             
            Stec WJ. Acc. Chem. Res. 1983, 16: 411
- 18c 
             
            Maryanoff BE.Reitz A. Chem. Rev. 1989, 89: 863
- 19 Attempts to prepare 2-en-4-ynoates 
            with unprotected amino functions in 2-position by using the corresponding aminophosphonate
            
            failed:  
            Seki M.Matsumoto K. Synthesis 1996, 580 . Ref. 11
- 20a 
             
            Brandsma L. Preparative Acetylenic Chemistry Elsevier; Amsterdam: 1988. p.102-103
- 20b 
             
            Journet M.Cai D.Dimichele L.Larsen RD. Tetrahedron Lett. 1998, 39: 6427
- 21a 
             
            Boronoeva TR.Belyaev NN.Stadnichuk MD.Petrov AA. J. Gen. Chem. USSR 1974, 44: 1914
- 21b 
             
            Belyaev NN.Komissarova EV.Stadnichuk MD. J. Gen. Chem. USSR 1982, 52: 1854
- 22 
             
            Miossec B.Danion-Bougot R.Danion D. Synthesis 1994, 1171
- 23 
             
            Canisius J.Schürmann M.Preut H.Krause N. Acta Cryst. 1999, C55: IUC99001118
- 24 
             
            Canisius J.Schürmann M.Preut H.Krause N. Z. Kristallogr. New Cryst. Struct. 2001, 216: 599
- 26a 
             
            Gelin R.Gelin S.Albrand M. Bull. Soc. Chim. Fr. 1972, 1946
- 26b 
             
            Olsson L.-I.Claesson A. Synthesis 1979, 743
- 26c 
             
            Beaulieu PL.Morisset VM.Garratt DG. Tetrahedron Lett. 1980, 21: 129
- 26d 
             
            Marshall JA.Wang X. J. Org. Chem. 1990, 55: 2995
- 26e 
             
            Marshall JA.Wang X.-j. J. Org. Chem. 1991, 56: 4913
- 26f 
             
            Marshall JA.Pinney KG. J. Org. Chem. 1993, 58: 7180
- 26g 
             
            Marshall JA.Bartley GS. J. Org. Chem. 1994, 59: 7169
- 26h 
             
            Corey EJ.Jones GB. Tetrahedron Lett. 1991, 32: 5713
- 26i 
             
            Aurrecoechea JM.Solay M. Tetrahedron Lett. 1995, 36: 2501
- 26j 
             
            Ma S.Gao W. Tetrahedron Lett. 2000, 41: 8933
- 27a 
             
            Franck B.Gehrken H.-P. Angew. Chem., Int. Ed. Engl. 1980, 19: 461 ; Angew. Chem. 1980, 92, 484
- 27b 
             
            Ganguli M.Burka LT.Harris TM. J. Org. Chem. 1984, 49: 3762
- 28a 
             
            Boivin TLB. Tetrahedron 1987, 43: 3309
- 28b 
             
            Koert U.Stein M.Wagner H. Chem.-Eur. J 1997, 3: 1170
- 29 
             
            Perron F.Albizati KF. Chem. Rev. 1989, 89: 1617
- 30 
             
            VanBrunt MP.Standaert RF. Org. Lett. 2000, 2: 705
- 31a With 
            Grignard reagents:  
            Alexakis A.Marek I.Mangeney P.Normant JF. Tetrahedron 1991, 47: 1677
- 31b  
            With organocuprates: see ref. [26f] 
- 32 
             
            Krause N.Laux M.Hoffmann-Röder A. Tetrahedron Lett. 2000, 41: 9613
- 34a 
             
            Adam W.Hadjarapoglou L. Top. Curr. Chem. 1993, 164: 45
- 34b 
             
            Adam W.Müller M.Prechtl F. J. Org. Chem. 1994, 59: 2358
- 36a 
             
            Hoffmann-Röder A.Krause N. Org. Lett. 2001, 3: 2537
- 36b For the corresponding 
            gold-catalyzed cyclization allenyl ketones to furans see:  
            Hashmi ASK.Schwarz L.Choi J.-K.Frost TM. Angew. Chem. Int. Ed. 2000, 39: 2285 ; Angew. Chem. 2000, 112, 2382
- 37 
             
            Shizuri Y.Nishiyama S.Imai D.Yamamura S. Tetrahedron Lett. 1984, 25: 4771
- 38 
             
            Mitchell P. FEBS Lett. 1977, 78: 1
- Syntheses of racemic citreoviral:
- 39a 
             
            Ebenezer W.Pattenden G. Tetrahedron Lett. 1992, 33: 4053; and references cited therein
- 39b 
             
            Shizuri Y.Nishiyama S.Shigemori H.Yamamura S. J. Chem. Soc., Chem. Commun. 1985, 292
- Syntheses of (+)-citreoviral by stereoselective oxidations:
- 40a 
             
            Hatakeyama S.Matsui Y.Suzuki M.Sakurai K.Takano S. Tetrahedron Lett. 1985, 26: 6485
- 40b 
             
            Trost BM.Lynch JK.Angle SR. Tetrahedron Lett. 1987, 28: 375
- 40c 
             
            Hatakeyama S.Sakurai K.Numata H.Ochi N.Takano S. J. Am. Chem. Soc. 1988, 110: 5201
- 41a 
             
            Nishiyama S.Shizuri Y.Yamamura S. Tetrahedron Lett. 1985, 26: 231
- 41b 
             
            Suh H.Wilcox CS. J. Am. Chem. Soc. 1988, 110: 470
- 41c 
             
            Whang K.Venkataraman H.Kim YG.Cha JK. J. Org. Chem. 1991, 56: 7174
- 42 
             
            Mulzer J.Bilow J.Wille G. J. Prakt. Chem. 2000, 342: 773
- 43a 
             
            Williams DR.White FH. Tetrahedron Lett. 1985, 26: 2529
- 43b 
             
            Williams DR.White FH. J. Org. Chem. 1987, 52: 5067
- 43c 
             
            Hanaki N.Link JT.MacMillan DWC.Overman LE.Trankle WG.Wurster JA. Org. Lett. 2000, 2: 223
- 44 
             
            Hoffmann HMR.Krumwiede D.Mucha B.Oehlerking HH.Prahst GW. Tetrahedron 1993, 49: 8999
- 45 
             
            Kofron WG.Baclawski LM. J. Org. Chem. 1976, 41: 1879
- 46 
             
            Seki M.Matsumoto K. Synthesis 1996, 580
- 47 
             
            Kober R.Steglich W. Liebigs Ann. Chem. 1983, 599
- 48 
             
            Haubrich A.Van Klaveren M.Van Koten G.Handke G.Krause N. J. Org. Chem. 1993, 58: 5849
- 49 
             
            Arndt S.Handke G.Krause N. Chem. Ber. 1993, 126: 251
- 50a 
             
            Marshall JA.DuBay WJ. J. Org. Chem. 1993, 58: 3435
- 50b 
             
            Piotti ME.Alper H. J. Org. Chem. 1997, 62: 8484
- 51 
             
            Marshall JA.Tang Y. J. Org. Chem. 1994, 59: 1457
References
The protonation of allenyl enolates bearing alkyl substituents at C-2 also occurs without diastereoselectivity: Krause, N. Unpublished results.
33Without transmetalation of the lithium enolate to the less basic titanium enolate the only product obtained by treatment with the acetone soln of DMDO is the aldol adduct of the ester enolate with acetone.
35Hoffmann-Röder, A.; Krause, N. Manuscript in preparation.
 
    