Aktuelle Neurologie 2002; 29(5): 223-228
DOI: 10.1055/s-2002-32032
Neues in der Neurologie
© Georg Thieme Verlag Stuttgart · New York

Perspektiven für regenerative Strategien nach Querschnittsverletzung

Perspectives for Regenerative Strategies Following Spinal Cord InjuryN.  Weidner1 , A.  Blesch2
  • 1Klinik und Poliklinik für Neurologie, Universitätsklinik Regensburg
  • 2Department of Neurosciences, University of California, San Diego, La Jolla, CA 92037, USA
Further Information

Publication History

Publication Date:
05 June 2002 (online)

Zusammenfassung

Bisher existiert keine etablierte Therapie, welche strukturelle und funktionelle Regeneration nach traumatischer Querschnittslähmung fördert. In verschiedenen präklinischen Studien konnten durch unterschiedliche regenerationsfördernde Strategien zumindest partielle strukturelle und funktionelle Verbesserungen erzielt werden. Dabei sind in Abhängigkeit vom Schweregrad des Traumas (kompletter oder inkompletter Querschnitt) verschiedene Therapieansätze denkbar, welche im Folgenden näher erläutert und im Hinblick auf ihre klinische Relevanz beleuchtet werden sollen.

Abstract

There are currently no therapies available, which promote structural and functional recovery following spinal cord injury in humans. Several studies have shown that partial structural and functional regeneration can be achieved in animal models of spinal cord injury. Different regenerative strategies can be envisioned depending on the severity of the injury (complete versus incomplete spinal cord injury). The following review summarizes experimental approaches aiming for functional recovery following spinal cord injury and discusses the relevance for potential clinical applications.

  • 1 Exner G, Meinecke F W. Trends in the treatment of patients with spinal cord lesions seen within a period of 20 years in German centers.  Spinal Cord. 1997;  35 415-419
  • 2 Bracken M B, Collins W F, Freeman D F. et al . Efficacy of methylprednisolone in acute spinal cord injury.  Jama. 1984;  251 45-52
  • 3 Bunge R P, Puckett W R, Hiester E D. Observations on the pathology of several types of human spinal cord injury, with emphasis on the astrocyte response to penetrating injuries.  Adv Neurol. 1997;  72 305-315
  • 4 Schwab M E, Bartholdi D. Degeneration and regeneration of axons in the lesioned spinal cord.  Physiol Rev. 1996;  76 319-370
  • 5 Cheng H, Cao Y, Olson L. Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function.  Science. 1996;  273 510-513
  • 6 Grill R, Murai K, Blesch A. et al . Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury.  J Neurosci. 1997;  17 5560-5572
  • 7 Z'Graggen W J, Metz G AS, Kartje G L. et al . Functional recovery and enhanced corticofugal plasticity after unilateral pyramidal tract lesion and blockade of myelin-associated neurite growth inhibitors in adult rats.  J Neurosci. 1998;  18 4744-4757
  • 8 Liu Y, Kim D, Himes B T. et al . Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function.  J Neurosci. 1999;  19 4370-4387
  • 9 Ramon-Cueto A, Cordero M I, Santos-Benito F F, Avila J. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia.  Neuron. 2000;  25 425-435
  • 10 Coumans J V, Lin T T, Dai H N. et al . Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins.  J Neurosci. 2001;  21 9334-9344
  • 11 Weidner N, Ner A, Salimi N, Tuszynski M H. Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury.  Proc Natl Acad Sci USA. 2001;  98 3513-3518
  • 12 Blesch A, Grill R J, Tuszynski M H. Neurotrophin gene therapy in CNS models of trauma and degeneration.  Prog Brain Res. 1998;  117 473-484
  • 13 Griffin J W, Hoffman P N. Degeneration and regeneration in the peripheral nervous system. In: Dyck PJ, Thomas PK (eds) Peripheral Neuropathy. Philadelphia; W. B. Saunders 1993: 361-376
  • 14 Bunge R P. Expanding roles for the Schwann cell: ensheathment, myelination, trophism and regeneration.  Curr Opin Neurobiol. 1993;  3 805-809
  • 15 Kromer L F, Cornbrooks C J. Transplants of Schwann cell cultures promote axonal regeneration in the adult mammalian brain.  Proc Natl Acad Sci USA. 1985;  82 6330-6334
  • 16 Bunge M B. Transplantation of purified populations of Schwann cells into lesioned adult rat spinal cord.  J Neurol. 1994;  242 S36-S39
  • 17 Li Y, Raisman G. Schwann cells induce sprouting in motor and sensory axons in the adult rat spinal cord.  J Neurosci. 1994;  14 4050-4063
  • 18 Xu X M, Chen A, Guenard V. et al . Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord.  J Neurocytol. 1997;  26 1-16
  • 19 Weidner N, Blesch A, Grill R J, Tuszynski M H. NGF-hypersecreting Schwann cell grafts augment and guide spinal cord axonal growth, and remyelinate CNS axons in a phenotypically appropriate manner that correlates with expression of L1.  J Comp Neurol. 1999;  413 495-506
  • 20 Franklin R J, Barnett S C. Olfactory ensheathing cells and CNS regeneration: the sweet smell of success?.  Neuron. 2000;  28 15-18
  • 21 Li Y, Field P M, Raisman G. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells.  Science. 1997;  277 2000-2002
  • 22 Kuhn H G, Svendsen C N. Origins, functions, and potential of adult neural stem cells.  Bioessays. 1999;  21 625-630
  • 23 McDonald J W, Liu X Z, Qu Y. et al . Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord.  Nat Med. 1999;  5 1410-1412
  • 24 Weiss S, Dunne C, Hewson J. et al . Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis.  J Neurosci. 1996;  16 7599-7609
  • 25 Cao Q L, Zhang Y P, Howard R M. et al . Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage.  Exp Neurol. 2001;  167 48-58
  • 26 Vroemen M, Winkler J, Weidner N. Adult neural progenitor cells survive transplantation into the acutely injured spinal cord.  Soc Neurosci Abs. 2001;  27 967
  • 27 Rapalino O, Lazarov-Spiegler O, Agranov E. et al . Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats.  Nat Med. 1998;  4 814-821
  • 28 Bregman B S, Kunkel-Bagden E, Reier P J. et al . Recovery of function after spinal cord injury: mechanisms underlying transplant-mediated recovery of function differ after spinal cord injury in newborn and adult rats.  Exp Neurol. 1993;  123 3-16
  • 29 Wirth E D, Reier P J, Fessler R G. et al . Feasibility and safety of neural tissue transplantation in patients with syringomyelia.  J Neurotrauma. 2001;  18 911-929
  • 30 Richardson P M, McGuinness U M, Aguayo A J. Axons from CNS neurons regenerate into PNS grafts.  Nature. 1980;  284 264-265
  • 31 Woerly S, Pinet E, de Robertis L. et al . Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel).  Biomaterials. 2001;  22 1095-1111
  • 32 Oudega M, Gautier S E, Chapon P. et al . Axonal regeneration into Schwann cell grafts within resorbable poly(alpha-hydroxyacid) guidance channels in the adult rat spinal cord.  Biomaterials. 2001;  22 1125-1136
  • 33 Namiki J, Kojima A, Tator C H. Effect of brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 on functional recovery and regeneration after spinal cord injury in adult rats.  J Neurotrauma. 2000;  17 1219-1231
  • 34 Patel T D, Jackman A, Rice F L. et al . Development of sensory neurons in the absence of NGF/TrkA signaling in vivo.  Neuron. 2000;  25 345-357
  • 35 Caroni P, Schwab M E. Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading.  J Cell Biol. 1988;  106 1281-1288
  • 36 McKerracher L, David S, Jackson D L. et al . Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth.  Neuron. 1994;  13 805-811
  • 37 Brösamle C, Huber A B, Fiedler M. et al . Regeneration of lesioned corticospinal tract fibers in the adult rat induced by a recombinant, humanized IN-1 antibody fragment.  J Neurosci. 2000;  20 8061-8068
  • 38 Oudega M, Rosano C, Sadi D. et al . Neutralizing antibodies against neurite growth inhibitor NI-35/250 do not promote regeneration of sensory axons in the adult rat spinal cord.  Neuroscience. 2000;  100 873-883
  • 39 Aigner L, Arber S, Kapfhammer J P. et al . Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system.  Cell. 1995;  83 269-278
  • 40 Bomze H M, Bulsara K R, Iskandar B J. et al . Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons.  Nat Neurosci. 2001;  4 38-43
  • 41 Benowitz L I, Goldberg D E, Madsen J R. et al . Inosine stimulates extensive axon collateral growth in the rat corticospinal tract after injury.  Proc Natl Acad Sci USA. 1999;  96 13486-13490
  • 42 Jones L L, Oudega M, Bunge M B, Tuszynski M H. Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury.  J Physiol. 2001;  533 83-89
  • 43 Gossen M, Freundlieb S, Bender G. et al . Transcriptional activation by tetracyclines in mammalian cells.  Science. 1995;  268 1766-1769
  • 44 Blesch A, Uy H S, Diergardt N, Tuszynski M H. Neurite outgrowth can be modulated in vitro using a tetracycline-repressible gene therapy vector expressing human nerve growth factor.  J Neurosci Res. 2000;  59 402-409
  • 45 Blesch A, Conner J M, Tuszynski M H. Modulation of neuronal survival and axonal growth in vivo by tetracycline-regulated neurotrophin expression.  Gene Ther. 2001;  8 954-960

Dr. med. Norbert Weidner

Klinik und Poliklinik für Neurologie · Universitätsklinik Regensburg

Universitätsstraße 84

93053 Regensburg

Email: norbert.weidner@klinik.uni-regensburg.de

    >