References
For recent syntheses of medium-sized cyclic amines, see: Ring-opening of bicyclic
precursors:
<A NAME="RY01102ST-1A">1a </A>
Donohoe TJ.
Raoof A.
Linney ID.
Helliwell M.
Org. Lett.
2001,
3:
861
<A NAME="RY01102ST-1B">1b </A>
Fatima I.
Ramon GA.
Juan CC.
Org. Lett.
2001,
3:
2957
<A NAME="RY01102ST-1C">1c </A> Cyclization of aminoalkenes:
Bergmann DJ.
Campi EM.
Jackson WR.
Patti AF.
Saylik D.
Tetrahedron Lett.
1999,
40:
5597
Ring-enlargement of six-membered rings:
<A NAME="RY01102ST-1D">1d </A>
Moris-Varas F.
Quian X.-H.
Wong C.-H.
J. Am. Chem. Soc.
1996,
118:
7647
Others:
<A NAME="RY01102ST-1E">1e </A>
Kitano T.
Shirai N.
Motoi M.
Sato Y.
J. Chem. Soc., Perkin Trans. 1
1992,
2851
<A NAME="RY01102ST-1F">1f </A>
Shaw R.
Anderson M.
Gallagher T.
Synlett
1990,
584
<A NAME="RY01102ST-1G">1g </A>
Shaw RW.
Gallagher T.
J. Chem. Soc. Perkin Trans.1
1994,
3549
For recent synthesis of medium-sized cyclic amines based on ring-closing metathesis,
see:
<A NAME="RY01102ST-2A">2a </A>
Meyers AI.
Downing SV.
Weiser MJ.
J. Org. Chem.
2001,
66:
1413
<A NAME="RY01102ST-2B">2b </A>
Heinrich MR.
Steglich W.
Tetrahedron Lett.
2001,
42:
3287
<A NAME="RY01102ST-2C">2c </A>
Fujiwara T.
Kato Y.
Takeda T.
Heterocycles
2000,
52:
147
<A NAME="RY01102ST-2D">2d </A>
Paquette LA.
Leit SM.
J. Am. Chem. Soc.
1999,
121:
8126
<A NAME="RY01102ST-2E">2e </A>
Visser MS.
Heron NM.
Didiuk MT.
Sagal JF.
Hoveyda AH.
J. Am. Chem. Soc.
1996,
118:
4291
<A NAME="RY01102ST-2F">2f </A>
Miller SJ.
Kim S.-H.
Chen Z.-R.
Grubbs RH.
J. Am. Chem. Soc.
1995,
117:
2108
<A NAME="RY01102ST-3">3 </A> For a review on Ns-chemistry, see:
Kan T.
Fukuyama T.
J. Syn. Org. Chem., Jpn.
2001,
59:
779
<A NAME="RY01102ST-4">4 </A>
Fukuyama T.
Jow C.-K.
Cheung M.
Tetrahedron Lett.
1995,
36:
6373
<A NAME="RY01102ST-5">5 </A>
Kurosawa, W.; Kan, T.; Fukuyama, T. Org . Synth ., in press.
<A NAME="RY01102ST-6">6 </A>
Fukuyama T.
Cheung M.
Jow C.-K.
Hidai Y.
Kan T.
Tetrahedron Lett.
1997,
38:
5831
<A NAME="RY01102ST-7">7 </A>
Hidai Y.
Kan T.
Fukuyama T.
Tetrahedron Lett.
1999,
40:
4711
<A NAME="RY01102ST-8">8 </A>
Hidai Y.
Kan T.
Fukuyama T.
Chem. Pharm. Bull.
2000,
48:
1570
<A NAME="RY01102ST-9">9 </A>
Fujiwara A.
Kan T.
Fukuyama T.
Synlett
2000,
1667
<A NAME="RY01102ST-10">10 </A>
Fukuyama T.
Cheung M.
Kan T.
Synlett
1999,
1301
<A NAME="RY01102ST-11">11 </A> For a review of the substituent effect on the cyclization, see:
Jung ME.
Synlett
1999,
843
<A NAME="RY01102ST-12">12 </A>
Experimental procedure for the introduction of Ns-amide and macrocyclization and spectral
data for all new compounds are described below.
Representative Experimental Procedures. Synthesis of 3a : To a stirred solution of 2-nitrobenzenesulfonamide (3.20 g, 15.8 mmol), 7-bromo-1-heptanol
(2a ) (1.00 g, 5.13 mmol), and Ph3 P (1.80 g, 8.91 mmol) in toluene (9 mL) and THF (1.2 mL) was added DEAD (4 mL, 8.80
mmol, 40% in toluene) dropwise at 0 °C under argon atmosphere. The solution was stirred
at 0 °C for 5 min, then at room temperature for 2.5 h. After removal of the solvent
under reduced pressure, the remaining residue was purified by flash chromatography,
(9:1 hexane-EtOAc) on a silica gel column, to give 3a (1.36 g, 70%) as white powder. IR (film, cm-1 ): 3346, 3096, 2933, 2857, 1539, 1440, 1414, 1360, 1341, 1166, 1125, 1060, 853, 782.
1 H NMR (400 MHz, CDCl3 ) δ: 1.29 (4 H, m), 1.33 (2 H, m), 1.52 (2 H, m), 1.81 (2 H, m), 3.10 (2 H, q, J = 6.8 Hz), 3.37 (2 H, t, J = 6.8 Hz), 5.23 (1 H, m), 7.76 (2 H, m), 7.87 (1 H, m), 8.14 (1 H, m). 13 C NMR (100 MHz, CDCl3 ) δ: 26.2, 27.8, 28.1, 29.4, 32.5, 33.8, 43.7, 125.3, 131.0, 132.8, 133.5, 133.7,
148.0. FAB-MS: m /z 379 (MH+ ); Anal. Calcd. for C13 H20 BrN2 O4 S: C, 41.17; H, 5.05; N, 7.39. Found: C, 41.24; H, 5.04; N, 7.30. Spectral data for 3b (white powder): IR (film, cm-1 ): 3346, 3099, 2930, 2856, 1592, 1539, 1440, 1414, 1360, 1342, 1165, 1125, 1061. 1 H NMR (400 MHz, CDCl3 ) δ: 1.26 (6 H, m), 1.39 (2 H, m), 1.53 (2 H, m), 1.83 (2 H, m), 3.10 (2 H, q, J = 6.8 Hz), 3.39 (2 H, t, J = 6.8 Hz), 5.23 (1 H, m), 7.75 (2 H, m), 7.87 (1 H, m), 8.15 (1 H, m). 13 C NMR (100 MHz, CDCl3 ) δ: 26.4, 28.0, 28.6, 28.9, 29.6, 32.7, 34.0, 43.9, 125.4, 131.2, 132.8, 133.6, 133.8,
148.2. FAB-MS: m /z 393 (MH+ ); HRMS (FAB): Found 393.0411 (MH+ ), Calcd. 393.0413 (C14 H22 BrN2 O4 S, MH+ ). Spectral data for 3c (white powder). IR (film, cm-1 ): 3346, 3099, 2930, 2856, 1592, 1539, 1440, 1414, 1360, 1342, 1165, 1125, 1061. 1 H NMR (400 MHz, CDCl3 ) δ: 1.25 (8 H, m), 1.40 (2 H, m), 1.54 (2 H, m), 1.83 (2 H, t, J = 4.0 Hz), 3.10 (2 H, q, J = 3.4 Hz), 3.40 (2 H, t, J = 3.4 Hz), 5.22 (1 H, m), 7.75 (2 H, m), 7.87 (1 H, m), 8.15 (1 H, m). 13 C NMR (100 MHz, CDCl3 ) δ: 26.4, 28.0, 28.5, 28.8, 29.1, 29.5, 32.7, 34.0, 43.8, 125.3, 131.1, 132.7, 133.5,
133.8, 148.1. FAB-MS : m/z 407 (MH+ ); Anal. Calcd. for C15 H24 BrN2 O4 S: C, 44.23; H, 5.69; N, 6.88. Found: C, 44.46; H, 5.71; N, 6.64.
Synthesis of 4a: To a stirred solution of Cs2 CO3 (2.10 g, 6.45 mmol) and TBAI (980 mg, 2.65 mmol) in CH3 CN (3.00 mL) was added N -2-nitrobenzenesulfonyl-7-bromo-1-aminoheptane (3a ) (500 mg, 1.32 mmol) in CH3 CN (24.0 mL) via syringe pump for 2 h at 60 °C, and stirred for additional 2 h at
the same temperature. The reaction mixture was poured into water and extracted with
EtOAc three times. The combined organic layer was washed with brine, dried over MgSO4 , filtered, and evaporated. The residue was purified by flash chromatography (Et2 O) on a silica gel column to give 4a (245 mg, 62%) as white powder. IR (film, cm-1 ): 2929, 2857, 1542, 1456, 1373, 1344, 1164, 993. 1 H NMR (400 MHz, CDCl3 ) δ: 1.59 (6 H, m), 1.69 (4 H, m), 3.25 (4 H, t, J = 6.0 Hz), 7.52 (1 H, m), 7.61 (2 H, m), 7.84 (1 H, m). 13 C NMR (100 MHz, CDCl3 ) δ: 24.8, 26.5, 27.7, 49.3, 123.9, 130.4, 131.4, 132.5, 133.3, 148.4. FAB-MS:
m/z 299 (MH+ ); HRMS (FAB): Found 299.0981(MH+ ); Calcd 299.0995 (C13 H19 N2 O4 S, MH+ ). Anal. Calcd for C13 H19 N2 O4 S: C, 52.33; H, 6.08; N, 9.39. Found: C, 52.29; H, 5.99; N, 9.35. Spectral data for 4b (white powder): IR (film, cm-1 ): 2931, 2859, 1725, 1546, 1463, 1373, 1347, 1290, 1161, 1125, 851, 777, 742. 1 H NMR (400 MHz, CDCl3 ) δ: 1.32 (8 H, m), 1.57 (4 H, m), 3.25 (4 H, t, J = 8.0 Hz), 7.61 (1 H, m), 7.68 (2 H, m), 7.98 (1 H, m). 13 C NMR (100 MHz, CDCl3 ) δ: 25.9, 27.9, 28.1, 47.8, 124.4, 129.0, 130.9, 131.8, 133.6, 148.4. FAB-MS: m/z 313 (MH+ ); Anal. Calcd for C14 H21 N2 O4 S: C, 53.83; H, 6.45; N, 8.97. Found: C, 53.87; H, 6.29; N, 8.68. Spectral data for 4c (white powder): IR (film, cm-1 ): 2928, 2855, 1542, 1463, 1373, 1346, 1160, 851. 1 H NMR (400 MHz, CDCl3 ) δ: 1.32 (10 H, m), 1.57 (4 H, m), 3.29 (4 H, t, J = 8.0 Hz), 7.59 (1 H, m), 7.67 (2 H, m), 7.97 (1 H, m). 13 C NMR (100 MHz, CDCl3 ) δ: 26.2, 27.9, 28.3, 28.5, 48.7, 124.0, 130.6, 131.4, 133.2, 133.3, 148.3. FAB-MS:
m/z 327 (MH+ ); HRMS (FAB): Found 327.1311 (MH+ ); Calcd. 327.1308 (C15 H23 N2 O4 S, MH+ ); Anal. Calcd for C15 H23 N2 O4 S: C, 54.96; H, 6.74; N, 8.30. Found: C, 55.19; H, 6.79; N, 8.58.
Synthesis of 6a: To a stirred solution of N -Boc-2-nitrobenzenesulfonamide (5 ) (1.25 g, 4.14 mmol), K2 CO3 (2.50 g, 18.1 mmol) and tetra-n -butylammonium iodide (40 mg, 0.11 mmol) in DMF (7 mL) was added 7-bromo-1-heptanol
(770 mg, 3.98 mmol). The solution was stirred at 60 °C for 10 h and then poured into
water. The mixture was extracted with EtOAc three times. The combined organic layer
was washed with brine, dried over MgSO4 , filtered, and evaporated. The residue was dissolved in CH2 Cl2 (1 mL) and TFA (7 mL). After stirring for 1 h, the reaction mixture was concentrated.
To the mixture in MeOH was added K2 CO3 (1.00 g, 7.23 mmol), and stirred for 10 min. The reaction mixture was poured into
water and extracted with CH2 Cl2 three times. The combined organic layer was washed with brine, dried over MgSO4 , filtered, and evaporated. Recrystallization from ether-hexane afforded 6a (1.00 g, 60%) as white powder. IR (film, cm-1 ): 3343, 2933, 2859, 1543, 1413, 1364, 1339, 1165, 1126, 1059, 853, 783, 741. 1 H NMR (400 MHz, CDCl3 ) δ: 1.30 (4 H, m), 1.50 (2 H, m), 1.53 (4 H, m), 3.09 (2 H, m), 3.63 (2 H, m), 5.25
(1 H, m), 7.75 (2 H, m), 7.87 (1 H, m), 8.14 (1 H, m). 13 C NMR (100 MHz, CDCl3 ) δ: 25.5, 26.4, 28.8, 29.5, 32.5, 43.8, 62.9, 125.4, 131.1, 132.8, 133.5, 133.8,
149.8. FAB-MS: m /z 317 (MH+ ); HRMS (FAB): Found 317.1180 (MH+ ); Calcd 317.1177 (C13 H21 O2 N5 S, MH+ ). Spectral data for 6b (white powder): IR (film, cm-1 ): 3289, 2931, 2856, 1540, 1418, 1362, 1338, 1163, 1126, 1058. 1 H NMR (400 MHz, CDCl3 ) δ: 1.27 (8 H, m), 1.52 (4 H, m), 3.09 (2 H, m), 3.62 (2 H, m), 5.28 (1 H, m), 7.71
(2 H, m), 7.87 (1 H, m), 8.14 (1 H, m). 13 C NMR (100 MHz, CDCl3 ) δ: 25.5, 26.3, 28.9, 29.1, 29.5, 32.6, 43.8, 62.9, 125.3, 131.1, 132.7, 133.5, 133.8,
148.1. FAB-MS: m/z 331 (MH+ ); HRMS (FAB): Found 331.1327 (MH+ ); Calcd 331.1329 (C14 H23 O2 N5 S, MH+ ). Spectral data for 6c (white powder): IR (film, cm-1 ): 3287, 2926, 2853, 1541, 1360, 1333, 1163, 1126, 1062, 854, 780, 728. 1 H NMR (400 MHz, CDCl3 ) δ: 1.25 (10 H, m), 1.53 (4 H, m), 3.09 (2 H, q, J = 6.8 Hz), 3.63 (2 H, t, J = 6.8 Hz), 5.27 (1 H, m), 7.74 (2 H, m), 7.87 (1 H, m), 8.14 (1 H, m). 13 C NMR (100 MHz, CDCl3 ) δ: 25.6, 26.4, 28.9, 29.2, 29.3, 29.5, 32.7, 43.8, 63.0, 125.3, 131.1, 132.7, 133.5,
133.8, 148.0. FAB-MS: m/z 345 (MH+ ); HR MS (FAB): Found 345.1407 (MH+ ); Calcd 345.1414 (C15 H25 O2 N5 S, MH+ ).
Representative Experimental Procedure. Synthesis of 4a under Mitsunobu Conditions
To a stirred solution of Ph3 P (463 mg, 2.29 mmol) and N -(2-nitrobenzenesulfonyl)-7-hydroxy-1-aminoheptane(6a ) (200 mg, 0.63 mmol) in toluene (48 mL)and THF (16 mL) was added DEAD (1.05 mL, 2.31
mmol, 40% in toluene) drop wise and stirred for 3 h. The reaction mixture was concentrated
in vacuo, the residue was purified by flash chromatography (1:4, EtOAc-hexane) on
a silica gel column to give 4a (112 mg, 59%) as white powder.
<A NAME="RY01102ST-13">13 </A>
Attempted macrocyclization of N -tert -Butoxycarbonyl-7-iodo-1-aminoheptane (7 ) was failed to the desired reaction as shown in Scheme
[2 ]
. Treatment of 7 with sodium hydride in DMF at room temperature, the starting material was completely
recovered. Upon heating to 60 °C, the dehydroiodination reaction was proceeded to
give 8 .
Scheme 2