References
<A NAME="RD03102ST-1">1</A>
Denmark SE.
Hurd AR.
J. Org. Chem.
2000,
65:
2875 ; and references cited therein
<A NAME="RD03102ST-2">2</A>
Denmark SE.
Herbert B.
J. Org. Chem.
2000,
65:
2887 ; and references cited therein
<A NAME="RD03102ST-3">3</A>
White JD.
Hrnciar P.
Yokochi AFT.
J. Am. Chem. Soc.
1998,
120:
7359 ; and references cited therein
<A NAME="RD03102ST-4">4</A>
Asano N.
Kuroi H.
Ikeda K.
Kizu H.
Kameda Y.
Kato A.
Adachi I.
Watson AA.
Nash RJ.
Fleet GWJ.
Tetrahedron: Asymmetry
2000,
11:
1
<A NAME="RD03102ST-5">5</A>
Goetz M.
Edwards OE. In The Alkaloids
Vol. IX:
Manske RHF.
Academic Press;
New York:
1976.
p.545-551
<A NAME="RD03102ST-6">6</A>
Hinman MM.
Heathcock CH.
J. Org. Chem.
2001,
66:
7751 ; and references cited therein
<A NAME="RD03102ST-7A">7a</A>
Lindstrom UM.
Somfai P.
Synthesis
1998,
109
<A NAME="RD03102ST-7B">7b</A>
Lindstrom UM.
Olofsson B.
Somfai P.
Tetrahedron Lett.
1999,
40:
9273
<A NAME="RD03102ST-8">8</A>
Grubbs RH.
Chang S.
Tetrahedron
1998,
54:
4413
For the application of the ring-closing metathesis reaction to the synthesis of aza-sugars
see:
<A NAME="RD03102ST-9A">9a</A>
Huwe CM.
Blechert S.
Tetrahedron Lett.
1995,
36:
1621
<A NAME="RD03102ST-9B">9b</A>
Overkleeft HS.
Pandit UK.
Tetrahedron Lett.
1996,
37:
547
<A NAME="RD03102ST-9C">9c</A>
Huwe CM.
Blechert S.
Synthesis
1997,
61
<A NAME="RD03102ST-9D">9d</A>
White JD.
Hrnciar P.
Yokochi AFT.
J. Am. Chem. Soc.
1998,
120:
7359
<A NAME="RD03102ST-9E">9e</A>
Lindstrom UM.
Somfai P.
Tetrahedron Lett.
1998,
39:
7173
<A NAME="RD03102ST-9F">9f</A>
Ovaa H.
Stragies R.
van der Marcel GA.
van Boom JH.
Blechert S.
Chem. Commun.
2000,
1501
<A NAME="RD03102ST-9G">9g</A>
Subramanian T.
Lin C.-C.
Tetrahedron Lett.
2001,
42:
4079
<A NAME="RD03102ST-9H">9h</A>
Klitze CF.
Pilli RA.
Tetrahedron Lett.
2001,
42:
5605
For the application of the ring-closing metathesis reaction to the synthesis of 2,5-dihydropyrroles
from dienes see:
<A NAME="RD03102ST-10A">10a</A>
Huwe CM.
Velder J.
Blechert S.
Angew. Chem. Int. Ed. Engl.
1996,
35:
2376
<A NAME="RD03102ST-10B">10b</A>
Fursterner A.
Picquet M.
Bruneau C.
Dixneuf PH.
Chem Commun
1998,
1315
<A NAME="RD03102ST-10C">10c</A>
Cerezo S.
Cortes J.
Moreno-Manas M.
Pleixats R.
Roglans A.
Tetrahedron
1998,
54:
14869
<A NAME="RD03102ST-10D">10d</A>
Furstner A.
Ackermann L.
Chem. Commun.
1999,
95
<A NAME="RD03102ST-10E">10e</A>
Bujard M.
Briot A.
Gouverneur V.
Mioskowski C.
Tetrahedron Lett.
1999,
40:
8795
<A NAME="RD03102ST-10F">10f</A>
Furstner A.
Liebl M.
Hill AF.
Wilton-Ely JDET.
Chem. Commun.
1999,
601
<A NAME="RD03102ST-10G">10g</A>
Ackermann L.
Furstner A.
Weskamp T.
Kohl FJ.
Hermann WA.
Tetrhedron Lett.
1999,
40:
4787
<A NAME="RD03102ST-10H">10h</A>
Ahmed M.
Barrett AGM.
Braddock DC.
Cramp SM.
Procopiou PA.
Tetrahedron Lett.
1999,
40:
8657
<A NAME="RD03102ST-10I">10i</A>
Evans PA.
Robinson JE.
Org. Lett.
1999,
1:
1929
<A NAME="RD03102ST-10J">10j</A>
Hunt JCA.
Laurent P.
Moody CJ.
Chem. Commun.
2000,
1771
These were prepared from the corresponding (E)- or (Z)-allylic alcohols via epoxidation (Sharpless AE or m-CPBA), oxidation (Swern or TPAP/NMO) and Wittig olefination using procedures from
ref.7a and the following references:
<A NAME="RD03102ST-11A">11a</A>
Hayashi N.
Fujiwara K.
Murai A.
Tetrahedron
1997,
53:
12425
<A NAME="RD03102ST-11B">11b</A>
Nicolaou KC.
Prasad CVC.
Somers PK.
Hwang CK.
J. Am. Chem. Soc.
1989,
111:
5330
<A NAME="RD03102ST-11C">11c</A>
Nicolaou KC.
Prasad CVC.
Hwang CK.
Duyyan ME.
Veale CA.
J. Am. Chem. Soc.
1989,
111:
5321
<A NAME="RD03102ST-11D">11d</A>
Díez-Martin D.
Kotecha NR.
Ley SV.
Mantegani S.
Menéndez JC.
Organ HM.
White AD.
Tetrahedron
1992,
48:
7899
<A NAME="RD03102ST-12">12</A>
(3S,4R)-3-Allylamino-6-(4-methoxybenzyloxy)-1-hexen-4-ol (8b): (2R,3R)-3-[2-(4-Methoxybenzyloxy)ethyl]-2-ethenyloxirane (7b) (1.647 g, 6.98 mmol) was dissolved in allylamine (11.5 mL, 153.56 mmol), then pTsOH.H2O (355 mg, 1.87 mmol) was added. The mixture was heated at 110 °C under nitrogen in
a sealed tube for 4 d. After cooling, all volatiles were removed in vacuo to give
a red solid that was purified by column chromatography (gradient elution from 0-12.5%
MeOH-CH2Cl2) to give the title compound (1.83 g, 90%) as a pale yellow solid. Mp 61.5-62.5 °C.
1H NMR (300 MHz, CDCl3) δ 7.24 (d, 2 H, J = 9.0 Hz), 6.86 (d, 2 H, J = 9.0 Hz), 5.94-5.81 (m,1 H), 5.71 (ddd,1 H, J = 8.4, 10.5, 17.4 Hz), 5.22 (dd,1 H, J = 1.8, 10.5 Hz), 5.19-5.18 (m,1 H), 5.13-5.12 (m,1 H), 5.08 (dd,1 H, J = 1.2, 9.9 Hz), 4.43 (s, 2 H), 3.85 (dt,1 H, J = 3.3, 6.6 Hz), 3.79 (s, 3 H), 3.69-3.56 (m, 2 H), 3.28 (apparent dd,1 H, J = 6.0, 13.8 Hz), 3.12 (apparent dd,1 H, J = 6.3, 14.4 Hz), 3.07 (dd,1 H, J = 3.3, 8.4 Hz), 1.80-1.61 (m, 2 H); 13C NMR (75 MHz, CDCl3) δ 159.00 (C), 136.40 (CH), 136.04 (CH), 130.05 (C), 129.18 (CH), 118.28 (CH2), 116.00 (CH2), 113.67 (CH), 72.84 (CH2), 71.38 (CH), 68.27 (CH2), 65.18 (CH), 55.25 (CH3), 49.55 (CH2), 32.76 (CH2); [α]D
25+2.0 (c 2.3 CHCl3); MS (CI +ve) m/z 292 (M-1+. 100%); HRMS (CI +ve) Calcd for C17H26NO3 (MH+) 292.191. Found: 292.194.
<A NAME="RD03102ST-13">13</A>
N
-Boc Protection: To a solution of 8b (1.17 g, 4.01 mmol) in dry THF (70 mL) were added triethylamine (0.98 mL, 7.00 mmol)
and di-tert-butyldicarbonate (1.53 g, 7.00 mmol) under nitrogen. The mixture was stirred at r.t.
for 24 h. All volatiles were then removed in vacuo to give a yellow oil which was
purified by column chromatography (gradient elution from 20-40% EtOAc-petroleum ether)
to give the N-Boc derivative of 8b (1.507 g, 96%) as a yellow oil. 1H NMR (300 MHz, CDCl3) δ 7.24 (d, 2 H, J = 8.4 Hz), 6.87 (d, 2 H, J = 8.4 Hz), 6.08 (ddd,1 H, J = 6.9, 9.9, 17.1 Hz), 5.85-5.72 (m,1 H), 5.30-5.21 (m, 2 H), 5.16-5.06 (m, 2 H),
4.44 (s, 2 H), 4.09 (m,1 H), 3.93-3.89 (m,1 H), 3.82 (m, 2 H), 3.80 (s, 3 H), 3.73-3.57
(m, 2 H), 1.76 (br s, 2 H); 13C NMR (75 MHz, CDCl3) δ CO not observed, 159.00 (C), 134.96 (CH), 129.98 (CH), 129.12 (CH), 118.38 (CH2), 116.27 (CH2), 113.65 (CH), 80.14 (C), 72.84 (CH2), 70.06 (CH), 68.32 (CH2), 65.11 (CH), 55.21 (CH3), 50.12 (CH2), 33.93 (CH2), 28.42 (CMe3); [α]D
25 -19.2 (c 2.4 CHCl3); MS (CI +ve) m/z 392 (M + 1+); HRMS (CI +ve) Calcd for C22H34NO5 (MH+) 392.244. Found: 392.244. RCM: Grubbs’ Catalyst (0.219 g, 0.266 mmol) was added to a solution of the above N-Boc derivative (1.039 g, 2.634 mmol) in dry DCM (500 mL) under nitrogen. The mixture
was heated to reflux for 24 h. The solution was cooled and the solvent was removed
in vacuo to give a brown oil which was purified by column chromatography (gradient
elution with 20-55% EtOAc-petroleum ether) to give 9b as a clear oil (0.877 g, 91%). 1H NMR (300 MHz, CDCl3) δ 7.25 (d, 2 H, J = 8.4 Hz), 6.86 (d, 2 H, J = 8.4 Hz), 5.80 (apparent dd,1 H, J = 1.5, 6.3 Hz), 5.64 (apparent dd,1 H, J = 2.1, 6.3 Hz), 4.85 (d,1 H, J = 8.4 Hz), 4.83-4.80 (m,1 H), 4.44 (s, 2 H), 4.19 (dd,1 H, J = 2.1, 15.6 Hz), 4.04-3.97 (m,1 H), 3.87 (apparent t,1 H, J = 9.6 Hz), 3.8 (s, 3 H), 3.71-3.56 (m, 2 H), 1.69-1.53 (m, 2 H), 1.48 (s, 9 H); 13C NMR (75 MHz, CDCl3) δ 158.91(CO), 156.14 (C), 130.39 (C), 129.25 (CH), 127.12 (CH), 126.53 (CH), 113.62
(CH), 80.50 (C), 72.84 (CH2), 71.33 (CH), 71.51 (CH), 67.87 (CH2), 55.26 (CH3), 54.68 (CH2), 31.79 (CH2), 28.48 (CH3); [α]D
23 -80.3 (c 2.4 CHCl3); MS (CI +ve) m/z 364 (M + 1+); HRMS (CI +ve) Calcd for C20H30NO5 (MH+) 364.212. Found: 364.199.
<A NAME="RD03102ST-14">14</A>
Chini M.
Crotti P.
Giovani E.
Macchina F.
Pineschi M.
Synlett
1992,
303
<A NAME="RD03102ST-15">15</A>
Reactions were performed on a Milestone, ETHOS SEL microwave labstation in sealed
teflon vessels with strict control of the internal reaction temperature.
<A NAME="RD03102ST-16">16</A>
Mukai C.
Sugimoto Y.-I.
Miyazawa K.
Yamaguchi S.
Hanaoka M.
J. Org. Chem.
1998,
63:
6281
<A NAME="RD03102ST-17">17</A>
Medeiros EFD.
Herbert JM.
Taylor RJK.
J. Chem. Soc. Perkin Trans. 1
1991,
2725
<A NAME="RD03102ST-18A">18a</A>
Mulzer J.
Dehmlow H.
J. Org. Chem.
1992,
57:
3194
<A NAME="RD03102ST-18B">18b</A>
Casiraghi G.
Ulgheri F.
Spanu P.
Rassu G.
Pinna L.
Gasparri FG.
Belicchi FM.
Pelosi G.
J. Chem. Soc., Perkin Trans. 1
1993,
2991
<A NAME="RD03102ST-19">19</A>
Misunobu O.
Synthesis
1981,
1
<A NAME="RD03102ST-20A">20a</A>
Bernotas RC.
Cube RV.
Tetrahedron Lett.
1991,
32:
161
<A NAME="RD03102ST-20B">20b</A>
Chen Y.
Vogel P.
J. Org. Chem.
1994,
59:
2487
<A NAME="RD03102ST-21">21</A>
de Vincente J.
Arrayás RG.
Carretero JC.
Tetrahedron Lett.
1999,
40:
6083
<A NAME="RD03102ST-22">22</A>
17: 1H NMR (300 MHz, CDCl3) δ 5.40 (ddd,1 H, J = 2.1, 4.2, 4.5 Hz), 5.12 (m,1 H), 4.99 (dd,1 H, J = 4.5, 7.8 Hz), 3.50 (dd,1 H, J = 2.1, 7.8 Hz), 3.27 (dd,1 H, J = 2.1, 11.7 Hz), 3.21 (ddd,1 H, obscured), 2.87 (dd,1 H, J = 4.2, 11.7 Hz), 2.71 (ddd,1 H, J =6.0, 9.0, 11.1 Hz), 2.07 (s, 3 H), 2.05 (s, 3 H), 2.02 (s, 3 H), 1.95-1.86 (m, 2
H); 13C NMR (75 MHz, CDCl3) δ 170.34 (CO), 170.11 (CO), 170.07 (CO), 77.13 (CH), 74.09 (CH), 73.16 (CH), 71.58
(CH), 57.12 (CH2), 52.91 (CH2), 30.54 (CH2), 21.11 (CH3), 20.94 (CH3), 20.75 (CH3); [α]D
25 +5.0 (c 0.8 CHCl3); 16: 1H NMR (300 MHz, D2O) δ 4.23-4.15 (m, 2 H), 3.86 (dd,1 H, J = 4.2, 6.3 Hz), 3.10 (dd,1 H, J = 1.8, 6.3 Hz), 3.04-2.98 (m, 2 H), 2.71 (dd,1 H, J = 4.2, 11.7 Hz), 2.61 (apparent quint,1 H), 2.08-1.95 (m,1 H), 1.77-1.67 (m,1 H);
13C NMR (75 MHz, D2O) δ 77.78 (CH), 77.64 (CH), 77.41 (CH), 74.81 (CH), 60.51 (CH2), 54.85 (CH2), 35.13 (CH2).
<A NAME="RD03102ST-23">23</A>
Griffith WP.
Ley SP.
Aldrichimica Acta
1990,
23:
13