References
<A NAME="RG18801ST-1A">1a</A>
Li CJ.
Chem. Rev.
1993,
93:
2023
<A NAME="RG18801ST-1B">1b</A>
Li CJ.
Tetrahedron
1996,
52:
5643
<A NAME="RG18801ST-1C">1c</A>
Li CJ.
Chan TH.
Tetrahedron
1999,
55:
11149
<A NAME="RG18801ST-1D">1d</A>
Li CJ.
Chan TH.
Organic Reactions in Aqueous Media
John Wiley and Sons, Inc.;
New York:
1997.
<A NAME="RG18801ST-1E">1e</A>
Lubineau JA.
Queneau Y.
Synthesis
1994,
741
<A NAME="RG18801ST-2A">2a</A>
Paquette LA.
Lobben PC.
J. Am. Chem. Soc.
1996,
118:
1917
<A NAME="RG18801ST-2B">2b</A>
Chan TH.
Lee MC.
J. Org. Chem.
1995,
60:
4228
<A NAME="RG18801ST-2C">2c</A>
Crao J.
Houter R.
Gordon DM.
Whitesides GM.
J. Org. Chem.
1994,
59:
3714
<A NAME="RG18801ST-2D">2d</A>
Paquette LA.
Mitzel TM.
J. Am. Chem. Soc.
1996,
118:
1931
<A NAME="RG18801ST-2E">2e</A>
Paquette LA.
Mitzel TM.
J. Org. Chem.
1996,
61:
8799
<A NAME="RG18801ST-2F">2f</A>
Paquette LA.
Mitzel TM.
Isaac MB.
Crasto CF.
Schomer WW.
J. Org. Chem.
1997,
62:
4293
<A NAME="RG18801ST-2G">2g</A>
Paquette LA.
Lobben PC.
J. Org. Chem.
1998,
63:
5604
<A NAME="RG18801ST-2H">2h</A>
Lobben PC.
Paquette LA.
J. Org. Chem.
1998,
63:
6990
<A NAME="RG18801ST-2I">2i</A>
Kumar S.
Kaur P.
Chimni SS.
Singh P.
Synlett
2001,
1431
<A NAME="RG18801ST-3">3</A>
Kumar S.
Kumar V.
Singh S.
Chimni SS.
Tetrahedron Lett.
2001,
42:
5073
<A NAME="RG18801ST-4">4</A>
Kumar S.
Kumar V.
Chimni SS.
J. Chem. Res., Synop.
2000,
314
<A NAME="RG18801ST-5A">5a</A>
Li CJ.
Lu Y.
Tetrahedron Lett.
1995,
36:
2721
<A NAME="RG18801ST-5B">5b</A>
Fujiwara N.
Yamamoto Y.
J. Org. Chem.
1999,
64:
4095
<A NAME="RG18801ST-6A">6a</A>
Wada M.
Honna M.
Kuramoto Y.
Miyoshi N.
Bull. Chem. Soc. Jpn.
1997,
70:
2265
<A NAME="RG18801ST-6B">6b</A>
Wada M.
Fukuma T.
Morioka M.
Takahashi T.
Miyoshi N.
Tetrahedron Lett.
1997,
38:
8045
<A NAME="RG18801ST-7A">7a</A>
Wang Z.
Meng X.
Kabalka GW.
Tetrahedron Lett.
1991,
32:
4619
<A NAME="RG18801ST-7B">7b</A>
Wang Z.
Meng X.
Kabalka GW.
Tetrahedron Lett.
1991,
32:
5677
<A NAME="RG18801ST-8">8</A>
Wang Z.
Xu G.
Wang D.
Pierce ME.
Confalone PN.
Tetrahedron Lett.
2000,
41:
4523
<A NAME="RG18801ST-9">9</A>
General Procedure: The 2-oxocarboxylic acid 1 (0.5 mmol), allyl bromide (0.75 mmol), indium metal (0.5 mmol) were taken in THF-H2O (2:1) mixture and the reaction mixture was stirred at 30 °C until the indium metal
dissolved. The turbid reaction mixture was treated with dilute HCl and extracted with
CHCl3. The solvent was distilled off and the residue was column chromatographed (silica
gel, 60-120 mesh) to isolate the allyl addition product. In the case of reactions
with sodium 2-oxocarboxylate (0.5 mmol), 2 C (1.5 mmol) and indium (1.0 mmol) the pH (4.7) of the reaction was controlled initially
by addition of HOAc and during the course of reaction with aq NaOH (2%).
<A NAME="RG18801ST-10">10</A>
1 H NMR spectral data for the representative cases are given here. 3e: δ 2.18 (s,1 H, OH, exchanges with D2O), 3.86 (dd, J
1 = 7.6 Hz, J
2 = 4 Hz, 1 H, CH), 4.59 (d, J = 4 Hz, 1 H, CH), 5.20-5.29 (m, 2 H, =CH2), 6.17-6.32 (m, 1 H, =CH), 7.22-7.37 (m, 5 H, ArH) (For Na salt: mp >300 °C, found
C 61.4; H 5.1%. C11 H11O3Na requires C 61.7; H 5.1%). 3f: mp 168 °C; δ 4.39 (s, 1 H, OH, exchanges with D2O), 4.4 (d,
J = 9.5 Hz, 1 H, CH), 4.79-4.99 (m, 2 H, =CH2), 5.89-6.03 (m, 1 H, =CH), 7.19-7.41 (m, 8 H, ArH), 7.72-7.73 (m, 2 H, ArH) (Found
C 76.3; H 5.99%. C17H16O3 requires C 76.1; H 5.97%). 3g : δ 1.31 (t, J = 7 Hz, 3 H, CH3), 2.09 (s, 1 H, OH, exchanges with D2O), 3.62 (dd, J
1 = 8.4 Hz, J
2 = 3.6 Hz,
1 H, CH), 4.20 (s, 1 H, OH, exchanges with D2O), 4.22 (q,
J = 7 Hz, 2 H, OCH2) 4.47 (d, J = 3.6 Hz, 1 H, CH), 5.26-5.38 (m, 2 H, =CH2), 5.77-6.07 (m, 1 H, =CH) (For Na salt: mp >300 °C; found C 45.4, H 4.9. C8H11O5Na requires C 45.7; H, 5.2%). 3 h: mp 97-98 °C; δ 1.29 (t, J = 7.2 Hz,
3 H,CH3), 2.20 (s, 1 H, OH, exchanges with D2O), 4.14 (d,
J = 8.2 Hz, 1 H, CH), 4.22 (q, J = 7.2 Hz, 2 H, OCH2), 5.02-5.17 (m, 2 H, =CH2), 5.56-5.68 (m, 1 H, =CH), 7.29-7.42 (m, 8 H, ArH), 7.58-7.63 (m, 2 H, ArH). (Found
C 63.3;
H 6.0%. C14 H16O5 requires C 63.3; H 6.06%).
<A NAME="RG18801ST-11">11</A>
Similar increase in both rate of reaction and diastereoselectivity of allylation at
pH 4.0 and slowed allylation at pH 7.0 was reported earlier (ref.
[2d]
).