RSS-Feed abonnieren
DOI: 10.1055/s-2002-22709
Compared Behaviors of trans- and cis-α,β-Epoxy-γ,δ-vinyl-silanes Towards Nucleophiles and Bases: High Regioselective Ring Opening and Deprotonation
Publikationsverlauf
Publikationsdatum:
05. Februar 2007 (online)

Abstract
This work describes the regioselective nucleophilic ring opening and the deprotonation of α,β-epoxy-γ,δ-vinyl-silanes with nitrogen, sulfur and carbon nucleophiles. In an original way, our results point out the α,β-epoxy-silane-like or vinyloxirane-like behavior of α,β-epoxy-γ,δ-vinyl-silanes according to their configuration and to the type of the nucleophile. Furthermore we report an easy stereoselective access to α-alkylated-α"-silylated-β,γ-unsaturated-ketones.
Key words
α,β-epoxy-γ,δ-vinyl-silanes - ring opening of oxiranes - regioselectivity.
- 1a 
             
            Le Bideau F.Aubert C.Malacria M. Tetrahedron: Asymmetry 1995, 6: 697
- 1b 
             
            Gilloir F.Malacria M. Tetrahedron Lett. 1992, 33: 3859
- 2 
             
            Courillon C.Le Fol R.Vandendris E.Malacria M. Tetrahedron Lett. 1997, 38: 5493
- 3 
             
            Le Bideau F.Gilloir F.Nilsson Y.Aubert C.Malacria M. Tetrahedron Lett. 1995, 36: 1641
- 4 
             
            Le Bideau F.Gilloir F.Nilsson Y.Aubert C.Malacria M. Tetrahedron 1996, 52: 7487
- 5 
             
            Marion F.Le Fol R.Courillon C.Malacria M. Synlett 2001, 138
- 6 
             
            Kawai T.Isobe M.Peters SC. Aust. J. Chem. 1995, 48: 115
- 7 
             
            Nobuki O. Organomet. News 2000, 3: 84
- 8 
             
            Jacobsen EN.Wu MH. In Comprehensive Asymmetric Catalysis I-IIIJacobsen EN.Pfaltz A.Yamamoto H. Springer; New York: 1999. Chap. 35.Reference Ris Wihthout Link
- 9 
             
            Garcia R.Martinez M.Aracil J. Chem. Eng. Technol. 1999, 22: 987
- 10 
             
            Zamojski A. Chemtracts 1998, 11: 287
- 11 
             
            Behrens CJ.Sharpless KB. J. Org. Chem. 1985, 50: 5696
- 12 
             
            Colvin EW. Chem. Org. Silicon Compd. 1998, 2: 1667
- 13 
             
            Davis AP.Hughes GJ.Lowndes P.Robbins CM.Thomas EJ.Whitham GH. J. Chem. Soc., Perkin
 Trans. 1 1981, 7: 1934
- 14 
             
            Hudrlik PF.Hudrlik AM. Adv. Silicon Chem. 1993, 2: 1
- 15 
             
            Chauret DC.Chong JM. Tetrahedron Lett. 1993, 34: 3695
- 16 
             
            Masnyk M.Wicha J. Chem. Ber. 1994, 127: 677
- 17 
             
            Bassindale AR.Soobramanien M.-C.Taylor PG. Bull. Soc. Chim. Fr. 1995, 132: 604
- 18 
             
            Adam W.Prein M.Richter MJ. Tetrahedron 1996, 52: 1231
- 19 
             
            Marshall JA. Chem. Rev. 1989, 89: 1503
- 20 
             
            Ittah Y.Sasson Y.Tsaroom S.Blum J. J. Org. Chem. 1978, 43: 4271
- 21 
             
            Coldham I.Collis AJ.Mould RJ. Electron. Conf. Heterocycl. Chem., [Proc.] 1997.Rzepa HS.Snyder JP.Leach C. Royal Society of Chemistry; Cambridge: 1997.Reference Ris Wihthout Link
- 22a 
             
            Tenaglia A.Waegell B. Tetrahedron Lett. 1988, 29: 4851
- 22b 
             
            Chini M.Crotti P.Macchia F. Tetrahedron Lett. 1990, 31: 4661
- 22c 
             
            Hayashi M.Kohmura K.Oguni N. Synlett 1991, 774
- 22d 
             
            Canas M.Poch M.Verdaguer X.Moyano A.Pericas MA.Riera A. Tetrahedron Lett. 1991, 32: 6931
- 23a 
             
            Fristad WE.Bailey TR.Paquette LA.Gleiter R.Böhm MC. J. Am.Chem. Soc. 1979, 101: 4420
- 23b 
             
            Tomoda S.Matsumoto Y.Takeuchi Y.Nomura Y. Chem. Lett. 1986, 7: 1193
- 23c 
             
            Hudrlik PF.Hudrlik AM.Kulkarni AK. Tetrahedron Lett. 1985, 26: 139
- 23d 
             
            Chakraborty TK.Reddy GV. Tetrahedron Lett. 1990, 31: 1335
- 24a 
             
            Eisch JJ.Galle JE. J. Am. Chem. Soc. 1976, 98: 4646
- 24b 
             
            Eisch JJ.Galle JE. J. Organomet. Chem. 1988, 341: 293
- 24c 
             
            Molander GA.Mautner K. J. Org. Chem. 1989, 54: 4042
- 25 
             
            Eisch JJ.Galle JE. J. Org. Chem. 1990, 55: 4835
- 26 
             
            Molander GA.Mautner K. Pure Appl. Chem. 1990, 62: 707
References
Preparation of 7a: To a solution of the trans-silylated vinyloxirane 1a (100 mg, 0.54 mmol, 1 equiv) in pentane (10 mL), under argon, was added dropwise,
         at -30 °C, to a solution of tert-butyllithium in pentane (0.72 mL of a 1.5 M, 1.08 mmol, 2 equiv). The reaction was
         monitored by TLC and after completion of the reaction it was quenched at this temperature,
         with a 1:1 solution of propionic acid:diethyl ether. The reaction mixture was then
         allowed to warm to room temperature and treated with an excess of a saturated sodium
         hydrogenocarbonate solution. The aqueous layer was then extracted with ethyl acetate.
         The combined organic layers were washed with brine and dried over anhydrous sodium
         sulfate. Flash chromatography on silica gel (petoleum ether/diethyl ether, 98:2) gave
         116 mg (89%) of the desired product as a 2:1 mixture of two diastereomers E/Z.
         E diastereomer: 1H NMR (200 MHz, C6D6): δ = 5.59 (1 H, dd, J = 15.25, 5.40 Hz), 5.44 (1 H, dt, J = 15.25, 6.90 Hz), 3.93 (1 H, d, J = 5.90 Hz), 1.90 (2 H, d, J = 6.40 Hz), 1.03 (9 H, s), 0.89 (9 H, s), 0.09 (3H, s), -0.02 (3H, s).
         13C NMR (50 MHz, C6D6): δ = 136.33, 124.80, 67.77, 48.42, 30.41 (3 C), 28.23 (3 C), 19.44, 18.16, -6.18,
         -7.82.
         Z diastereomer: 1H NMR (200 MHz, C6D6): δ = 5.64 (1 H, dd, J = 10.82, 10.34 Hz), 5.34 (1 H, m), 4.40 (1 H, d, J = 10.37 Hz), 2.01 (1 H, d, J = 9.20 Hz), 1.80 (1 H, dd, J = 5.62, 1.70 Hz) 1.05 (9 H, s), 0.86 (9 H, s), 0.13 (3 H, s), 0.00 (3 H, s).
         13C NMR (50 MHz, C6D6): δ = 133.62, 125.95, 62.38, 41.89, 29.50 (3 C), 27.46 (3 C), 19.60, 17.49, -7.07,
         -8.26.
Preparation of 10 (typical procedure for lithiation of the cis-epoxide): To a cold solution (-116 °C) of the cis-silylated vinyloxirane 1b (200 mg, 1.08 mmol, 1 equiv) and TMEDA (0.25 mL, 1.63 mmol, 1.5 equiv) in diethyl
         ether (10 mL) was added dropwise a solution of sec-butyllithium in cyclohexane (1.67 mL of a 1.3 M, 2.17 mmol, 2 equiv). The reaction
         mixture was stirred under argon at this temperature until the bright yellow lithiated
         anion precipitated (ca 30-45 minutes). Methyliodide (0.68 mL, 10.85 mmol, 10 equiv)
         was then quickly added to the solution and after 10 minutes at -116 °C, the mixture
         was allowed to warm to room temperature. The organic layer was washed with a saturated
         ammonium chloride solution, and the aqueous phase was extracted with diethyl ether.
         The combined organic layers were washed with brine and dried over anhydrous sodium
         sulfate. Evaporation under reduced pressure afforded the crude product that was purified
         by flash chromatography on silica gel (petroleum ether/diethyl ether, 99:1). The desired
         product was obtained in 89% yield.
         1H NMR (200 MHz, C6D6): δ = 5.74 (1 H, ddd, J = 17.70, 10.32, 8.36 Hz), 5.25 (1 H, dd, J = 17.22, 1.48 Hz), 5.04 (1 H, dd, J = 10.82, 0.98 Hz), 3.01 (1 H, d, J = 8.38 Hz), 1.18 (3 H, s), 0.90 (9 H, s), 0.05 (3 H, s), 0.00 (3 H, s).
         13C NMR (50 MHz, C6D6): δ = 138.09, 119.95, 67.01, 56.64, 28.53 (3 C), 25.87, 18.28, -3.85, -4.21.
Rearrangement of 10 with palladium(0): Triphenylphosphite (26 µL, 0.10 mmol, 0.2 equiv) was added via
         a syringe to a stirred solution of palladium diacetate (6 mg, 0.03 mmol, 0.05 equiv)
         in freshly distilled THF (1 mL). After 10 minutes at room temperature, a solution
         of vinylepoxysilane 10 (100 mg, 0.5 mmol, 1 equiv) in THF (2 mL) was transferred by cannula into the pale
         yellow reaction mixture. After completion of the rearrangement (ca 2 h), the crude
         mixture was filtered through a pad of celite and the organic layer was directly evaporated
         under reduced pressure. After purification by flash chromatography on silica gel,
         the ketone 14 was obtained in 82% yield.
         1H NMR (200 MHz, CDCl3): δ = 6.06 (1 H, ddd, J = 17.22, 10.82, 10.32 Hz), 4.93 (1 H, dd, J = 10.34, 1.48 Hz), 4.90 (1 H, dd, J = 16.74, 1.48 Hz), 3.41 (1 H, d, J = 10.82 Hz), 2.11 (3 H, s), 0.91 (9 H, s), 0.07 (3H, s), 0.03 (3H, s).
         13C NMR (50 MHz, C6D6): δ = 207.42, 134.36, 113.99, 54.01, 31.30, 26.84 (3 C), 18.38, -6.12, -6.63.
 
    