Synlett 2002(2): 0243-0246
DOI: 10.1055/s-2002-19771
LETTER
© Georg Thieme Verlag Stuttgart · New York

Chromium Catalyzed Oxidation of (Homo-)Allylic and (Homo-)Propargylic Alcohols with Sodium Periodate to Ketones or Carboxylic Acids

Lizette Schmieder-van de Vondervoorta, Sabine Bouttemya, José M. Padróna, Jean Le Brasb, Jacques Muzartb, Paul L. Alsters*a
a DSM Fine Chemicals-Advanced Synthesis and Catalysis, P.O. Box 18, 6160 MD Geleen, The Netherlands
Fax: +31(46)4767604; e-Mail: paul.alsters@dsm.com;
b Unité Mixte de Recherche Réactions Sélectives et Applications, CNRS, Université de Reims Champagne-Ardenne, B.P. 1039, 51687 Reims Cedex 2, France
Fax: +33(3)26913166; e-Mail: jacques.muzart@univ-reims.fr;
Further Information

Publication History

Received 14 November 2001
Publication Date:
02 February 2007 (online)

Abstract

Primary and secondary (homo-)allylic and (homo-)propargylic alcohols can be oxidized under slightly acidic conditions at or below room- temperature with sodium periodate in the presence of sodium dichromate as the catalyst to the corresponding carboxylic acids and ketones, respectively.

    References

  • 1 Tidwell TT. In Organic Reactions   Vol. 39:  Wiley; New York: 1990.  p.297 
  • 2a Cainelli G. Cardillo G. Chromium Oxidations in Organic Chemistry   Verlag; Berlin: 1984. 
  • 2b Luzzio FA. In Organic Reactions   Vol. 53:  Wiley; New York: 1998.  p.1 
  • 3a Dijksman A. Marino-González A. Mairata I. Payeras A. Arends IWCE. Sheldon RA. J. Am. Chem. Soc.  2001,  123:  6826 ; and references therein
  • 3b Ben-Daniel R. Alsters PL. Neumann R. J. Org. Chem.  2001,  66:  8650 
  • 3c de Nooy AEJ. Besemer AC. van Bekkum H. Synthesis  1999,  1153 
  • 3d Bobbitt JM. Flores MCL. Heterocycles  1988,  27:  509 
  • 4a Nait Ajjou A. Tetrahedron Lett.  2001,  42:  13 ; and references therein
  • 4b Graauw CF. Peters JA. van Bekkum H. Huskens J. Synthesis  1994,  1007 
  • 5 For a review of other Cr-catalyzed oxidations of alcohols, see: Muzart J. Chem. Rev.  1992,  92:  113 
  • 6a Soler MA. Martín VS. Tetrahedron Lett.  1999,  40:  2815 
  • 6b Li LT. Ma SM. Youji Huaxue  2000,  20:  850 ; Chem. Abstr. 2001, 134, 192946
  • 7a Brandsma L. Verkruijsse HD. Studies in Organic Chemistry 8, Synthesis of Acetylenes, Allenes and Cumulenes   Elsevier; Amsterdam: 1981.  p.236 
  • 7b Huché M. Tetrahedron  1980,  36:  331 
  • 7c Crombie L. Jacklin AG. J. Chem. Soc.  1955,  1740 
  • Preparation of allenic carbonyl compounds by oxidation of homo-propargylic alcohols with chromic acid:
  • 8a Le Gras J. C. R. Acad. Sc. Paris (C)  1966,  263:  1460 
  • 8b Bertrand M. C. R. Acad. Sc. Paris (C)  1957,  244:  1790 
  • 8c Jones ERH. Mansfield GH. Whiting MC. J. Chem. Soc.  1954,  3208 
  • 9 A related Cr catalyzed method based on periodic acid has recently been reported: Zhao M. Li J. Song Z. Desmond R. Tschaen DM. Grabowski EJJ. Reider PJ. Tetrahedron Lett.  1998,  39:  5323 ; this method obviously works under much more acidic conditions than the present sodium periodate method, which uses a catalytic amount of acid
  • 11a

    Ref. [1] , p 315, 349.

  • 11b Mancuso AJ. Swern D. Synthesis  1981,  165 
  • 12 Mancuso AJ. Huang SL. Swern D. J. Org. Chem.  1978,  43:  2480 
  • 13 The CrO3 complex with 3,5-dimethylpyrazole is capable of oxidizing 1-octyn-3-ol: Corey EJ. Fleet GWJ. Tetrahedron Lett.  1973,  14:  4499 
  • 15 Riahi A. Hénin F. Muzart J. Tetrahedron Lett.  1999,  40:  2303 
  • 16 The kinetics for the oxidation of alcohols with chromic acid follows a rate law that depends on the concentration of the acid chromate ion HCrO4 - rather than on total Cr(VI). At low acidity, alcohol oxidation by chromic acid proceeds very slowly because the concentration of HCrO4 - is negligible: Wiberg KB. In Oxidation in Organic Chemistry Part A   Academic Press; New York: 1965.  p.161 
  • 18 For evidence of complexation of periodate to chromate, see: Okumura A. Kitani M. Murata M. Bull. Chem. Soc. Jpn.  1994,  67:  1522 
10

An overview of homo-allylic alcohols that have been successfully oxidized without isomerization by stoichiometric Cr(VI) reagents containing organic nitrogen bases can be found in ref. [2b]

14

Typical Procedure; preparation of 5-hexyn-3-one: A 250 mL jacketed reactor, equipped with a mechanical stirrer, was charged with water (90 mL), 65% aq HNO3 (0.49 g; 5 mmol HNO3), and Na2Cr2O7.2H2O (0.300 g; 1 mmol). The solution was cooled to 0 °C, and NaIO4 (23.53 g; 110 mmol) was added at maximum speed of mechanical stirring. Subsequently, a cooled solution (0 °C) of 5-hexyn-3-ol (9.86 g; 100 mmol) in CHCl3 (90 mL) was added in one portion. The mixture was vigorously stirred for 24 h at 0 °C. The organic phase was separated from the aqueous slurry, which was subsequently extracted with CH2Cl2 (2 × 100 mL). After drying (Na2SO4) of the combined organic phases and evaporation of the solvents at 20 °C/150 mbar, a yellow oil was obtained, which according to NMR consisted of pure 5-hexyn-3-one (9.1 g; 95% yield). The product is unstable and should be stored in the freezer. 1H NMR (CDCl3): 3.15 (d), 2.51 (q), 2.15 (t), 0.93 (t). 13C NMR (CDCl3): 204.7, 77.0, 73.1, 34.9, 33.6, 7.8. Other reactions were carried out similarly; see Table [1] for experimental details.

17

During Cr(VI) catalyzed alcohol oxidation with periodic acid, a similar formation of a green Cr(III) species was observed, see ref. [9]