Synlett 2002(2): 0223-0226
DOI: 10.1055/s-2002-19761
LETTER
© Georg Thieme Verlag Stuttgart · New York

Pyridazines. Part 26: [1] Efficient and Regioselective Pd-Catalysed Arylation of 4-Bromo-6-chloro-3-phenylpyridazine

Eddy Sotelo, Enrique Raviña*
Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
Fax: +34(981)594912; e-Mail: [email protected];
Weitere Informationen

Publikationsverlauf

Received 4 October 2001
Publikationsdatum:
02. Februar 2007 (online)

Abstract

The regioselective arylation at position 4 of 4-bromo-6-chloro-3-phenylpyridazine has been performed using a Suzuki cross-coupling reaction. This route allows access to a wide-ranging series of pharmacologically useful pyridazine derivatives and confirms the usefulness of chloropyridazines as a masking group for the carbonyl moiety in cross-coupling reactions involving 5-bromo-3(2H)-pyridazinones.

    References

  • 1 For the previous paper in this series, see: Efficient and selective deprotection of phar-macologically useful 2-MOM-pyridazinones using Lewis acids in: Sotelo E. Coelho A. Raviña E. Tetrahedron Lett.   2001.  43:  p.8633 
  • 2a Frank H. Heinisch G. In Pharmacologically Active Pyridazines Part 1, Progressing Medicinal Chemistry   Ellis GP. West GB. Elsevier; Amsterdam: 1990.  p.271 
  • 2b Frank H. Heinisch G. In Pharmacologically Active Pyridazines Part 2, Progress in Medicinal Chemistry   Chap. 29:  Ellis GP. Luscombe DK. Elsevier; Amsterdam: 1992.  p.141 
  • 3 Rohr M. Toussaint D. Chayer S. Mann A. Suffer J. Wermuth WG. Heterocycles  1996,  43:  1459 
  • 4 Enguehard C. Hervet M. Allouchi H. Debouzy JC. Gueiffier A. Synthesis  2001,  4:  595 
  • 5a Turck A. Mojovic L. Queguiner G. Bull. Soc. Fr.  1993,  130:  488 
  • 5b Konno S. Sagi M. Siga F. Yamanaka H. Heterocycles  1992,  34:  225 
  • 6a Draper TL. Bailey TR. J. Org. Chem.  1995,  60:  748 
  • 6b Oshawa A. Abe Y. Igeta H. Chem. Pharm. Bull.  1980,  28:  3488 
  • 7 Guery S. Parrot I. Rival Y. Wermuth CG. Synthesis  2001,  5:  699 
  • 8 Krajsovszky G. Matyus P. Riedl Z. Csanyi D. Hajos G. Heterocycles  2001,  55:  1105 
  • 9 Li JJ. Gribble GW. Palladium in Heterocyclic Chemistry   Elsevier; Amsterdam: 2000.  p.3 
  • 10 Bessard Y. Roduit JP. Tetrahedron  1999,  55:  393 
  • 11 Minato A. Suzuki K. Tamao K. Kumada M. J. Chem. Soc., Chem. Commun.  1984,  511 
  • 12 Tilley JW. Zawoiski S. J. Org. Chem.  1988,  53:  386 
  • 13a Komrlj J. Maes BUW. Lemière GLF. Haemers A. Synlett  2000,  11:  1581 
  • 13b Maes BUW. Lémiere GLF. Domminisse R. Augusyns K. Haemers A. Tetrahedron  2000,  56:  1777 
  • 14 Parrot I. Rival Y. Wermuth CG. Synthesis  1999,  7:  1163 
  • 15 Trecourt F. Turck A. Plé N. Paris A. Quéguiner G. J. Heterocyclic Chem.  1995,  32:  1057 
  • 16 Brown DJ. In The Pyridazines I, Chemistry of Heterocyclic Compounds   Vol. 56:  Taylor EC. Wipf P. Wiley; New York: 2000.  p.23 
  • 17 Estévez I. Coelho A. Raviña E. Synthesis  1999,  9:  1666 
  • 18 Coelho A. Sotelo E. Estevez I. Raviña E. Synthesis  2001,  6:  871 
  • 20 Suzuki A. In Recent Advances in the Cross-coupling Reactions of Organoboron Deri-vatives with Organic Electrophiles, Perspectives in Organopalladium Chemistry for the XXI Century   Tsuji J. Elsevier; Amsterdam: 1999.  p.145 
  • 22a Gronowitz S. Lawitz K. Chem. Scr.  1983,  22:  265 
  • 22b Gronowitz S. Stevens MFG. J. Chem. Soc., Perkin Trans. 1  1994,  3311 
  • 28 Abdel-Motti FM. Abdel-Megeid FME. Zaki ME. Shamrokh AH. Egypt. J. Pharm. Sci.  1998,  38:  87 
  • 29 Meresz O. Foster-Verner PA. J. Chem. Soc., Chem. Commun.  1972,  16:  950 
19

4-Bromo-6-chloro-3-phenylpyridazine 2: 89%, mp: 111-112 °C (dec.), iso-PrOH. IR (KBr): 1590, 1480 cm-1. 1H NMR (DMSO-d6, 300 MHz): 8.44 (s, 1 H, CH), 7.70 (m, 2 H, Aromatics), 7.54 (m, 3 H, Aromatics) ppm.

21

Cross-coupling Reactions, General Procedure: 5-Bromo-3-chloro-6-phenylpyridazine 2 (0.25 g, 0.93 mmol) was mixed with the arylboronic acid (0.93 mmol), Pd(PPh3)4 (5 mg, 0.006 mmol) and Na2CO3 (0.49 g, 5.08 mmol) in 30 mL of a 3:1 mixture of DME-H2O. The mixture was flushed with argon for 5 min and then stirred and heated at reflux (oil bath 90 °C) under argon until the starting material had disappeared (8-12 h). The mixture was allowed to cool and concentrated to dryness under reduced pressure. The residue was extracted into CH2Cl2 (3 × 20 mL), dried (Na2SO4) and then purified by column chromatography on silica gel to afford the 6-chloropyridazines 3, which were recrystallised from the appropriate solvent (Table).
Selected physical and spectral data for compounds 3. 3a: 90%, mp: 111-112 °C (dec.), iso-PrOH. IR (KBr): 1563, 1092, 695 cm-1. 1H NMR (DMSO-d 6, 300 MHz): 8.61 (s, 1 H, CH), 8.23 (m, 2 H, Aromatics), 7.79 (m, 2 H, Aromatics), 7.57 (m, 6 H, Aromatics) ppm. 3b: 95%, mp: 126-127 °C, iso-PrOH. IR (KBr): 1559, 1089, 696 cm-1. 1H NMR (DMSO-d 6, 300 MHz): 8.54 (s, 1 H, CH), 8.14 (d, J = 8.0 Hz, 2 H, Aromatics), 7.76 (m, 2 H, Aromatics), 7.55 (m, 3 H, Aromatics), 7.37 (d, J = 8.0 Hz, 2 H, Aroma tics), 2.38 (s, 3 H, CH3) ppm. 3d: 95%, mp: 150-152 °C iso-PrOH. IR (KBr): 1560, 1090, 697 cm-1. 1H NMR (DMSO-d 6, 300 MHz): 8.39 (s, 1 H, CH), 8.08 (d, J = 8.8 Hz, 2 H, Aromatics), 7.61 (m, 2 H, Aromatics), 7.41 (m, 3 H, Aromatics), 6.97 (d, J = 8.8 Hz, 2 H, Aromatics), 3.70 (s, 3 H, OCH3) ppm.

23

3(2H)-Pyridazinones 4 were prepared heating at reflux 3a-f in neat acetic acid during 3-7 h. 4a: 86%, mp: 178.5-180.6 °C, Acetonitrile. IR (KBr): 3000, 1668, 1589cm-1. 1H NMR (DMSO-d 6, 300 MHz): 11.58 (bs, 1 H, NH), 7.38-7.20 (m, 10 H Aromatics), 7.01 (s, 1 H, H4) ppm. 4e: 84%, mp: 235.0-235.5 °C, iso-PrOH. IR (KBr): 3000, 1662, 1580 cm-1.
1H NMR (DMSO-d 6, 300 MHz): 12.05 (bs, 1H, NH), 7.48-7.33 (m, 7 H, 5 H Aromatics + 1 H furan + H4), 6.28 (dd,
J = 3.5, 1.8 Hz, 1 H, furan), 5.64 (d, J = 3.5 Hz, 1 H; furan) ppm.

24

Aminopyridazines 5 were prepared heating at reflux 3a-f in presence of the appropriate amine (3 equivalents) in ethanol (24-72 h). 3,4-Diphenyl-6-(2-methoxyethylamino)pyrid-azine 5a: 78%, (72 h) mp: 199-201 °C, iso-PrOH. IR (KBr): 3000, 1590 cm-1. 1H NMR (DMSO-d 6, 300 MHz): 7.69-7.21 (m, 10 H, Aromatics), 6.94 (s, 1 H, H4), 3.64 (t, J = 7.1 Hz, 2 H, CH2), 3.35 (s, 3 H, CH3), 3.29 (t, J = 7.1 Hz, 2 H, CH2) ppm.

25

Hydrazinopyridazines 6 were prepared heating at reflux 3a-f in presence of 3 equivalents of hydrazine hydrate in ethanol (3-4 h). 3,4-Diphenyl-6-hydrazinopyridazine 6a: 89%, mp: 153-155 °C, iso-PrOH. [28] IR (KBr): 3500-300, 1576 cm-1. 1H NMR (CDCl3, 300 MHz): 8.12 (m, 3 H, Aromatics), 7.67 (m, 2 H, Aromatics), 7.54 (s, 1 H, CH), 7.51 (m, 6 H, Aromatics), 6.08 (2, 1 H, NH), 3.48 (s, 2 H, NH2) ppm.

26

Pyridazines 7 were prepared by reductive dechlorination of 3a-f (HCOONH4/Pd-C, MeOH). 3,4-diphenylpyridazine 7a: 88%, mp: 106-107 °C, iso-PrOH. [29] IR (KBr): 1590 cm-1. 1H NMR (DMSO-d 6, 300 MHz): 9.21 (d, J = 5.2 Hz, 1 H, CH), 7.50 (d, J = 5.2 Hz, 1 H, CH), 7.46 (m, 10 H, Aromatics) ppm.

27

Complete details of the synthesis and spectral characteristics of the compounds obtained will be published elsewhere in a full paper. All compounds gave satisfactory microanalytical (C, H, N ± 0.4%) and spectral data (1H, 13C, FTIR, MS). Yields given correspond to isolated pure compounds.