Subscribe to RSS
DOI: 10.1055/s-0043-1775483
Concise Synthesis of Ethericins A and B, C10-Deoxygerfelin, and Diorcinol
This work was supported by the National Natural Science Foundation of China, Regional Project (Grant No. 22061008, 22361008).

Abstract
Naturally occurring diaryl ethers exhibit significant potential for pharmaceutical and agricultural applications owing to their diverse biological activities. Previous synthetic approaches to these bioactive molecules have predominantly focused on developing novel aryl–O–aryl bond formation methodologies. In this study, a two-phase synthetic strategy is presented, comprising a coupling phase establishing the ethereal linkage through SNAr reaction between simple aryl substrates, followed by a functionalization phase enabling precise introduction of diverse substituents through C–H activation and subsequent cross-coupling transformations. This modular approach has enabled the efficient synthesis of four natural products: ethericin A, ethericin B, C10-deoxygerfelin, and diorcinol.
Key words
diaryl ether - two-phase synthesis - ethericin A - ethericin B - C10-deoxygerfelin - diorcinolSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775483.
- Supporting Information
Publication History
Received: 04 March 2025
Accepted after revision: 09 April 2025
Article published online:
05 May 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Singh KS, Singh A. J. Mol. Struct. 2022; 1265: 133302
- 2 Calcul L, Fiorilla C, Crews C. J. Nat. Prod. 2009; 72: 443
- 3 Liu B, Li T. Mini-Rev. Org. Chem. 2024; 21: 590
- 4 Chen T, Yang GF. J. Agric. Food Chem. 2020; 68: 9839
- 5 Marsh G, Stenutz R, Bergman Å. Eur. J. Org. Chem. 2003; 2566
- 6 Evano G, Nitelet A. Org. Chem. Front. 2017; 4: 2480
- 7 Rohrbach S, Tuttle T, Chiba S, Murphy JA. Angew. Chem. Int. Ed. 2019; 58: 16368
- 8 Carson MC, Kozlowski MC. Nat. Prod. Rep. 2024; 41: 208
- 9 Hirokane T, Nishii K, Yamada H. Nat Commun. 2014; 5: 3478
- 10 Sharma D, Kumar A. Dalton Trans. 2022; 51: 8103
- 11 Ishihara Y, Baran PS. Synlett 2010; 1733
- 12 Kanda Y, Wilde NC, Baran PS. J. Org. Chem. 2020; 85: 10293
- 13 Kuhl N, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 2
- 14 Zheng QZ, Jiao N. Tetrahedron Lett. 2014; 55: 1121
- 15 Singh KS. ChemistrySelect 2024; 9: e202303955
- 16 König WA, Pfaff KP. Liebigs Ann. Chem. 1978; 1289
- 17 Takashi H, Yasuo K. Bokin Bobai 1981; 9: 129
- 18 Yamamoto Y, Furukawa T. Chem. Pharm. Bull. 1972; 20: 931
- 19 Yukiko T, Takao T. Chem. Pharm. Bull. 2003; 51: 794
- 20 Ebrahim W, Daletos G, Proksch P. J. Nat. Prod. 2016; 79: 914
- 21a McNeill E, Du Bois J. Chem. Sci. 2012; 3: 1810
- 21b Mack JC, Gipson J, Du Bois J, Sigman M. J. Am. Chem. Soc. 2017; 139: 9503
- 21c Shome S, Singh SP. Tetrahedron Letters. 2017; 58: 3743
- 22 Yang Y, Lin Y, Rao Y. Org. Lett. 2012; 14: 2874
For selected examples of Ru-catalyzed C–H activation, see: