Subscribe to RSS
DOI: 10.1055/s-0043-1775477
Cumene-to-Phenol Process Mediated by Bromine Radicals through Photoinduced Ligand-to-Metal Charge Transfer
This research was supported in part by Cornell University and Princeton University. This research is supported in part by the Department of Energy, Office of Science, Office of Basic Energy Sciences, Catalysis Science Early Career Award (DE-SC0024412). This research made use of the NMR Facility at Cornell University, supported by National Science Foundation (CHE-1531632) and the Cornell Center for Materials Research Facilities, supported by National Science Foundation (DMR-1719875).

Abstract
Selective C–H activation via hydrogen atom transfer (HAT) has gained significant interest recently. One industrial application for HAT can be found in the tertiary benzylic C–H bond of cumene for producing phenol, a versatile chemical feedstock for various industries. However, the overall phenol yield remains low using the existing Hock process due to the poor selectivity towards the key reaction intermediate, cumene hydroperoxide (CHP). Here, we demonstrate an efficient strategy for phenol production through photooxidation of cumene to CHP using iron bromide under blue light irradiation, where bromine radicals (generated in situ via ligand-to-metal charge transfer) are used as hydrogen atom abstractors. Mechanistic studies revealed the cumene-to-CHP conversion occurred via a tertiary C–H bond abstraction by a radical mechanism, and the acetic acid and water additives increased CHP selectivity through stabilizing peroxides. The cumene-phenol process achieved up to 88% yield of CHP in 1 hour and could be used with a wide range of substrates. We thus developed a selective, mild, and efficient phenol production method using iron bromide under photooxidative conditions.
Key words
HAT - selective oxidation - photochemistry - cumene - ligand-to-metal charge transfer - bromine radical - phenol process - Hock rearrangementSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775477. Experimental details, methods, data, spectra, and photographs of the experimental setup are included.
- Supporting Information
Publication History
Received: 17 February 2025
Accepted after revision: 31 March 2025
Article published online:
16 May 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1 Chen K, Zhang P, Wang Y, Li H. Green Chem. 2014; 16: 2344
- 2 Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
- 3 Norinder J, Matsumoto A, Yoshikai N, Nakamura E. J. Am. Chem. Soc. 2008; 130: 5858
- 4 Davies HM. L, Morton D. J. Org. Chem. 2016; 343
- 5 Docherty JH, Lister TM, Mcarthur G, Findlay MT, Domingo-Legarda P, Kenyon J, Choudhary S, Larrosa I. Chem. Rev. 2023; 123: 7692
- 6 Ritleng V, Sirlin C, Pfeffer M. Chem. Rev. 2002; 102: 1731
- 7 Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; 2056
- 8 Dalton T, Faber T, Glorius F. ACS Cent. Sci. 2021; 7: 245
- 9 Bih NL, Rwiza MJ, Ripanda AS, Mahamat AA, Machunda RL, Choi JW. Heliyon 2025; 11: e41150
- 10 Ohkubo K, Fujimoto A, Fukuzumi S. J. Am. Chem. Soc. 2013; 135: 5368
- 11 Sarma BB, Carmieli R, Collauto A, Efremenko I, Martin JM. L, Neumann R. ACS Catal. 2016; 6: 6403
- 12 Han JW, Jung J, Lee Y.-M, Nam W, Fukuzumi S. Chem. Sci. 2017; 8: 7119
- 13 Xie J, Li X, Guo J, Luo L, Delgado JJ, Martsinovich N, Tang J. Nat. Commun. 2023; 14: 4431
- 14 Zhou W, Wang X, Lin F, Xue S, Lin W, Hou Y, Yu Z, Anpo M, Yu JC, Zhang J, Wang X. Angew. Chem. Int. Ed. 2025; 64: e202417703
- 15 Baek D, Abdulghani AJ. A, Walsh DJ, Hofsommer DT, Gerken JB, Shi C, Chen EY.-X, Hermans I, Stahl SS. J. Am. Chem. Soc. 2025; 147: 8687
- 16 Perego C, Angelis A, Pollesel P, Millini R. Ind. Eng. Chem. Res. 2021; 60: 6379
- 17 Stahl SS, Alsters PL. Liquid Phase Aerobic Oxidation Catalysis: Industrial Applications and Academic Perspectives. John Wiley & Sons; Weinheim: 2016
- 18 Lu Q, Shi G, Zhou H, Yuan E, Chen C, Ji L. Appl. Catal., A 2022; 630: 118441
- 19 Nowacka A, Briantais P, Prestipino C, Xamena FX. L. i. ACS Sustainable Chem. Eng. 2019; 7: 7708
- 20 Liao S, Chi Y, Yu H, Wang H, Peng F. ChemCatChem 2014; 6: 555
- 21 Dobras G, Orlińska B. Appl. Catal., A 2018; 561: 59
- 22 Kurganova EA, Dakhnavi EM, Koshel’ GN. Pet. Chem. 2017; 57: 262
- 23 Orlińska B. Tetrahedron Lett. 2010; 51: 4100
- 24 Oh S, Stache EE. ACS Catal. 2023; 13: 10968
- 25 Jia P, Li Q, Poh WC, Jiang H, Liu H, Deng H, Wu J. Chem 2020; 6: 1766
- 26 Zhao J, Nanjo T, de Lucca EC, White MC. Nat. Chem. 2019; 11: 213
- 27 Saxena B, Patel RI, Sharma A. RSC Sustainability 2024; 2: 2169
- 28 Chen D.-F, Chrisman CH, Miyake GM. ACS Catal. 2020; 10: 2609
- 29 Rovis T, Treacy SM. Synthesis 2023; 56: 1967
- 30 Luo Z, Meng Y, Gong X, Wu J, Zhang Y, Ye L, Zhu C. Chin. J. Chem. 2020; 38: 173
- 31 Jung Y, Park J.-Y, Ko S.-O, Kim Y.-H. Chemosphere 2013; 90: 812
- 32 Oh HS, Kim J.-J, Kim Y.-H. Korean J. Chem. Eng. 2016; 33: 885
- 33 Oh D, Zhou L, Chang D, Lee W. Chem. Eng. J. 2018; 334: 1169
- 34 Fayet A, Bourcier S, Casaretto N, Nay B, Frison G. ChemCatChem 2023; 15: e202300578
- 35 Fordham JW. L, Williams HL. J. Am. Chem. Soc. 1950; 72: 4465
- 36 Fordham JW. L, Williams HL. J. Am. Chem. Soc. 1951; 73: 1634
- 37 Barton DH. R, Delanghe NC. Tetrahedron Lett. 1997; 38: 6351
- 38 Hronec M, Kiss G, Sitek J. J. Chem. Soc., Faraday Trans. 1 1983; 79: 1091
- 39 Mancuso JR, McClements DJ, Decker EA. J. Agric. Food Chem. 2000; 48: 213
- 40 Dadashi-Silab S, Kim K, Lorandi F, Schild DJ, Fantin M, Matyjaszewski K. Polym. Chem. 2022; 13: 1059
- 41 Kharasch MS, Mayo FR. J. Am. Chem. Soc. 1933; 55: 2468
- 42 Dadashi-Silab S, Pan X, Matyjaszewski K. Macromolecules 2017; 50: 7967
- 43 Oh S, Stache EE. J. Am. Chem. Soc. 2022; 144: 5745
- 44 Oh S, Stache EE. Chem. Soc. Rev. 2024; 53: 7309
- 45 Langer DL, Oh S, Stache EE. Chem. Sci. 2023; 15: 1840
- 46 Wang M, Wen J, Huang Y, Hu P. ChemSusChem 2021; 14: 5049
- 47 Zhang G, Zhang Z, Zeng R. Chin. J. Chem. 2021; 39: 3225
- 48 Fan X, He C, Ji M, Sun X, Luo H, Li C, Tong H, Zhang W, Sun Z, Chu W. Chem. Comm. 2022; 58: 6348