Subscribe to RSS
DOI: 10.1055/s-0043-1775420
Iron-Catalyzed Cross-Electrophile Coupling
We thank the NIH-NIGMS (GM140070) and the President’s Sustainability Initiative Award for financial support. We also thank the Loker Hydrocarbon Research Institute for the Harold E. Moulton Fellowship.
Abstract
Metal-catalyzed cross-coupling reactions have transformed molecular synthesis. Although metal-catalyzed reactions have been used for cross-electrophile coupling reactions, they remain challenging due to homodimer formation. Recently, our group developed an iron-catalyzed cross-electrophile coupling of benzyl halides and disulfides to produce thioethers without the use of an exogenous reductant or photoredox conditions, and with undetectable levels of elimination. This Synpacts article highlights both our design strategy to obviate detrimental homodimer formation and the generality of the method.
1 Introduction
2 Conceptualization and Development
3 Mechanistic Studies and Hypothesis
4 Conclusion and Future Directions
Publication History
Received: 06 September 2024
Accepted after revision: 29 October 2024
Article published online:
11 November 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 2 Brown DG, Boström J. J. Med. Chem. 2016; 59: 4443
- 3 Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
- 4 Firsan SJ, Sivakumar V, Colacot TJ. Chem. Rev. 2022; 122: 16983
- 5a Knappke CE. I, Grupe S, Gärtner D, Corpet M, Gosmini C, Jacobi von Wangelin A. Chem. Eur. J. 2014; 20: 6828
- 5b Everson DA, Weix DJ. J. Org. Chem. 2014; 79: 4793
- 6 Weix DJ. Acc. Chem. Res. 2015; 48: 1767
- 7 Poremba KE, Direll SE, Reisman SE. ACS Catal. 2020; 10: 8237
- 8 Smith RT, Zhang X, Rincón JA, Agejas J, Mateos C, Barberis M, García-Cerrada S, de Frutos O, MacMillan DW. C. J. Am. Chem. Soc. 2018; 140: 17433
- 9 Zhang P, Le C, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 8084
- 10 Zhang W, Lu L, Zhang W, Wang Y, Ware SD, Mondragon J, Rein J, Strotman N, Lehnherr D, See KA, Lin S. Nature 2022; 604: 292
- 11 Semenya J, Yang Y, Picazo E. J. Am. Chem. Soc. 2024; 146: 4903
- 12a Hanschmann E.-M, Godoy JR, Berndt C, Hudemann C, Lillig CH. Antioxid. Redox Signaling 2013; 19: 1539
- 12b Wei Y, Li B, Prakash D, Ferry JG, Elliott SJ, Stubbe J. Biochemistry 2015; 54: 7019
- 13 Liu L, Aguilera MC, Lee W, Youshaw CR, Neidig ML, Gutierrez O. Science 2021; 374: 432
- 15a Ye Y, Chen H, Yao K, Gong H. Org. Lett. 2020; 22: 2070
- 15b Chen H, Ye Y, Tong W, Fang J, Gong H. Chem. Commun. 2020; 56: 454
- 16 Fakharee M, Katsev S. Nat. Commun. 2019; 10: 4556
- 17 Stephanopoulos N, Francis MB. Nat. Chem. Biol. 2011; 7: 876
- 18 Kalia J, Raines RT. Curr. Org. Chem. 2010; 14: 138
- 19 Lu T, Goh AW, Yu M, Adams J, Lam F, Teo T, Li P, Noll B, Zhong L, Diab S, Chahrour O, Hu A, Abbas AY, Liu X, Huang S, Sumby CJ, Milne R, Midgley C, Wang S. J. Med. Chem. 2014; 57: 2275
- 20 Wright JA, Gaunt MJ, Spencer JB. Chem. Eur. J. 2006; 12: 949
- 21 Liu H, Ji D.-W, Min X.-T, Mei Y.-K, Sun S.-H, Zhang G, Hu Y.-C, Chen Q.-A. Org. Lett. 2006; 25: 1878
- 22a Yang Y.-Z, Li Y, Lv G.-F, He D.-L, Li J.-H. Org. Lett. 2022; 24: 5115
- 22b Ang NW. J, Ackermann L. Chem. Eur. J. 2021; 27: 4883
- 23 Fernández-Rodríguez MA, Shen Q, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 2180
- 24 Liu W, Lavagnino MN, Gould CA, Alcazar J, MacMillan DW. C. Science 2021; 374: 1258
- 25 Abu-Omar MM, Loaiza A, Hontzeas N. Chem. Rev. 2005; 105: 2227
- 26a Kharasch MS, Fields EK. J. Am. Chem. Soc. 1941; 63: 2316
- 26b Tamura M, Kochi J. J. Organomet. Chem. 1971; 31: 289
- 26c Nakamura M, Matsuo K, Ito S, Nakamura E. J. Am. Chem. Soc. 2004; 126: 3686
- 27 Bedford RB. Acc. Chem. Res. 2015; 48: 1485
- 28 Neidig ML, Carpenter SH, Curran DJ, DeMuth JC, Fleischauer VE, Iannuzzi TE, Neate PG. N, Sears JD, Wolford NJ. Acc. Chem. Res. 2019; 52: 140
- 29 Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299