Subscribe to RSS
DOI: 10.1055/s-0043-1775370
Rapid and Mild Nucleophilic Substitution of a Highly Active (Indol-2-yl)methyl Electrophile in a Microflow Reactor
This work was partially supported by the Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from Japan Agency for Medical Research and Development (AMED) under Grant Number JP23ama121044, and Moonshot R&D Program from Japan Science and Technology Agency (JST) under Grant Number JPMJMS2236.
Abstract
Indoles are common motifs in functional agricultural and pharmaceutical molecules. Heteroatom alkylation is the most frequently used chemical reaction in the pharmaceutical field. Developing protocols for the nucleophilic substitution of (indol-2-yl)methyl electrophiles is important for functionalizing indoles. There are few studies on the nucleophilic substitution at the 2′-position of the electrophiles without an electron-withdrawing group at the 1-position or substituents at the 2′- and 3-positions, where the existing approaches require high temperatures and long reaction times. In this study, we demonstrated rapid (7–12 s) and mild (25 °C) microflow nucleophilic substitution at the 2′-position of indole derivatives without an electron-withdrawing group at the 1-position and substituents at the 2′- or 3-positions. Comparable batch conditions resulted in a lower yield.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775370.
- Supporting Information
Publication History
Received: 09 April 2024
Accepted after revision: 17 May 2024
Article published online:
13 June 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Welsch ME, Snyder SA, Stockwell BR. Curr. Opin. Chem. Biol. 2010; 14: 347
- 1b Shearer J, Castro JL, Lawson AD. G, MacCoss M, Taylor RD. J. Med. Chem. 2022; 65: 8699
- 2a Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
- 2b Lancianesi S, Palmieri A, Petrini M. Chem. Rev. 2014; 114: 7108
- 2c Kumar S. Ritika, Future J. Pharm. Sci. 2020; 6: 121
- 3 Schneider N, Lowe DM, Sayle RA, Tarselli MA, Landrum GA. J. Med. Chem. 2016; 59: 4385
- 4 Arcadi A, Berden G, Ciogli A, Corinti D, Crestoni ME, De Angelis M, Fabrizi G, Goggiamani A, Iazzetti A, Marrone F, Marsicano V, Oomens J, Serraiocco A. Eur. J. Org. Chem. 2022; e202201166
- 5 Dhayalan V, Ramesh N, Mohanakrishnan AK. Synth. Commun. 2009; 39: 1241
- 6a Siles R, Kawasaki Y, Ross P, Freire E. Bioorg. Med. Chem. Lett. 2011; 21: 5305
- 6b Kim N, Meyers KM, Mendez-Andino JL, Warshakoon NC, Ji W, Wos JA, Colson A, Mitchell MC, Davis JR, Pinney BB, Reizes O, Hu XE. Bioorg. Med. Chem. Lett. 2006; 16: 5445
- 7a Baumann M, Baxendale IR. Beilstein J. Org. Chem. 2015; 11: 1194
- 7b Rossetti I, Compagnoni M. Chem. Eng. J. 2016; 296: 56
- 7c Porta R, Benaglia M, Puglisi A. Org. Process Res. Dev. 2016; 20: 2
- 7d Plutschack MB, Pieber B, Gilmore K, Seeberger PH. Chem. Rev. 2017; 117: 11796
- 7e Britton J, Raston CL. Chem. Soc. Rev. 2017; 46: 1250
- 7f Shukla CA, Kulkarni AA. Beilstein J. Org. Chem. 2017; 13: 960
- 7g Fanelli F, Parisi G, Degennaro L, Luisi R. Beilstein J. Org. Chem. 2017; 13: 520
- 7h Suryawanshi PL, Gumfekar SP, Bhanvase BA, Sonawane SH, Pimplapure MS. Chem. Eng. Sci. 2018; 189: 431
- 7i Souza JM. D, Galaverna R, de Souza AA. N, Brocksom TJ, Pastre JC, de Souza RO. M. A, Oliveira KT. D. An. Acad. Bras. Ciênc. 2018; 90: 1131
- 7j Ramanjaneyulu BT, Vishwakarma NK, Vidyacharan S, Adiyala PR, Kim D.-P. Bull. Korean Chem. Soc. 2018; 39: 757
- 7k Gérardy R, Emmanuel N, Toupy T, Kassin V.-E, Tshibalonza NN, Schmitz M, Monbaliu J.-CM. Eur. J. Org. Chem. 2018; 2301
- 7l Guidi M, Seeberger PH, Gilmore K. Chem. Soc. Rev. 2020; 49: 8910
- 7m Yoshida J.-i, Nagaki A, Yamada T. Chem. Eur. J. 2008; 14: 7450
- 7n Yoshida J.-i. Flash Chemistry: Fast Organic Synthesis in Microsystems. Wiley-VCH; Weinheim: 2008
- 7o Yoshida J.-i. Chem. Rec. 2010; 10: 332
- 7p Yoshida J.-i, Saito K, Nokami T, Nagaki A. Synlett 2011; 1189
- 7q Yoshida J.-i, Takahashi Y, Nagaki A. Chem. Commun. 2013; 49: 9896
- 7r Suga S, Okajima M, Fujiwara K, Yoshida J.-i. J. Am. Chem. Soc. 2001; 123: 7941
- 7s Takumi M, Sakaue H, Nagaki A. Angew. Chem. Int. Ed. 2022; 61: e202116177
- 8a Masui H, Kanda S, Fuse S. Commun. Chem. 2023; 6: 47
- 8b Fuse S, Kanda S, Masui H. Chem. Asian J. 2023; 19: e202300909
- 8c Matsuura Y, Fuse S. Chem. Commun. 2024; 60: 2497
- 8d Matsuura Y, Fuse S. Org. Biomol. Chem. 2024; 22: 3448
- 9 The temperature was fixed at 25 °C because the reaction did not complete at lower temperature conditions in the similar reaction using (1H-indol-3-yl)methanol with higher reactivity comparing with 1a (ref. 8a). In addition, we observed clogging of the reaction channel by extending reaction time even at 25 °C probably due to over reactions (Table 2, entry 4). Therefore we did not examine higher temperature conditions that presumably cause over-reactions.
- 10a Otake Y, Nakamura H, Fuse S. Angew. Chem. Int. Ed. 2018; 57: 11389
- 10b Asano S, Kudo S, Hayashi J.-I. Chem. Eng. J. 2024; 489: 151183
- 10c A T-shape mixer with narrower reaction channel has a higher mixing efficiency than that with wider reaction channel, see: Lobasov AS, Minakov AV, Kuznetsov VV, Rudyak VY, Shebeleva AA. Chem. Eng. Process. 2018; 134: 105
- 11 Li C, Zhang H.-H, Fan T, Shen Y, Wu Q, Shi F. Org. Biomol. Chem. 2016; 14: 6932
- 12 Murar CE, Thuaud F, Bode JW. J. Am. Chem. Soc. 2014; 136: 18140
- 13 Reddy CR, Reddy MD, Srikanth B. Org. Biomol. Chem. 2012; 10: 4280
- 14 Braga SF. P, Martins LC, da Silva EB, Sales Júnior PA, Murta SM. F, Romanha AJ, Soh WT, Brandstetter H, Ferreira RS, de Oliveira RB. Bioorg. Med. Chem. 2017; 25: 1889
- 15 Dethe DH, Erande RD, Ranjan A. J. Org. Chem. 2013; 78: 10106
- 16 Huang L, Xun X, Zhao M, Xue J, Li G, Hong L. J. Org. Chem. 2019; 84: 11885
- 17 Cacchi S, Fabrizi G, Goggiamani A, Molinaro C, Verdiglione R. J. Org. Chem. 2014; 79: 401
- 18 Sujeevan Reddy G, Sandeep Kumar J, Thirupataiah B, Amirul Hossain K, Babu Nallapati S, Bhat Giliyaru V, Chandrashekhar Hariharapura R, Gautham Shenoy G, Pal M. Tetrahedron Lett. 2021; 77: 153213
- 19 Mitra T, Das S, Basak A. Tetrahedron Lett. 2009; 50: 5846
- 20 Zhou H, Zhu D, Xing Y, Huang H. Adv. Synth. Catal. 2010; 352: 2127
Nucleophilic substitution at the 2′-position of 2-(bromomethyl)-1-methyl-indole was reported, but the detailed procedure and the yield were not presented, see:
For recent selected reviews of continuous flow synthesis, see:
For selected publications on flash chemistry, see:
For pioneering and recent works on flow microsynthesis using highly reactive carbocations, see:
We also reported nucleophilic addition of alkyllithiums to indole-3-carbaldehydes and subsequent nucleophilic substitution at the 3′-position, see:
We recently reported highly electrophilic cation generation from diarylmethanols and furfuryl alcohols and their use for subsequent nucleophilic substitutions, see: