Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2024; 35(12): 1423-1428
DOI: 10.1055/s-0043-1763628
DOI: 10.1055/s-0043-1763628
letter
Special Section 13th EuCheMS Organic Division Young Investigator Workshop
Hydrogen Sulfate-Templated Synthesis of a Bis-Ferrocene Macrocycle
Funding from the Carlsberg Foundation (CF19-0510) and Novo Nordisk Foundation (NNF19OC0057672) is gratefully acknowledged.
Abstract
A bis-ferrocene macrocycle was synthesized by reversible acylhydrazone formation under thermodynamic control, starting from a ferrocene functionalized with hydrazide and protected aldehyde moieties. A hydrogen sulfate anion acts as a template to direct the synthesis specifically toward the macrocyclic dimer, due to a weak but selective binding interaction. This work highlights the utility of dynamic combinatorial chemistry as an approach to macrocycle synthesis.
Key words
supramolecular chemistry - hydrazones - macrocycles - host–guest systems - ferrocene - dynamic combinatorial chemistrySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1763628.
- Supporting Information
Publication History
Received: 15 September 2023
Accepted after revision: 05 October 2023
Article published online:
13 December 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a van Staveren DR, Metzler-Nolte N. Chem. Rev. 2004; 104: 5931
- 1b Kraatz H.-B. J. Inorg. Organomet. Polym. Mater. 2005; 15: 83
- 1c Kirin SI, Kraatz H.-B, Metzler-Nolte N. Chem. Soc. Rev. 2006; 35: 348
- 1d Moriuchi T, Hirao T. Top. Organomet. Chem. 2006; 17: 143
- 1e Chowdhury S, Schatte G, Kraatz H.-B. Angew. Chem. Int. Ed. 2008; 47: 7056
- 1f Hirao T. J. Organomet. Chem. 2009; 694: 806
- 1g Metzler-Nolte N, Salmain M. In Ferrocenes: Ligands, Materials and Biomolecules . Štěpnička P. Wiley; Chichester: 2008: 499
- 1h Semenčić MC, Barišić L. Croat. Chem. Acta 2017; 90: 537
- 1i Falcone N, Kraatz H.-B. In Advances in Bioorganometallic Chemistry . Hirao T., Moriuchi T; Elsevier: Amsterdam: 2019: 57
- 2 Albada B, Metzler-Nolte N. Acc. Chem. Res. 2017; 50: 2510
- 3 Chaudhary A, Poonia K. Inorg. Chem. Commun. 2021; 134: 109044
- 4a Hammond PJ, Bell AP, Hall CD. J. Chem. Soc., Perkin Trans. 1 1983; 707
- 4b Tárraga A, Molina P, López JL. Tetrahedron Lett. 2000; 41: 2479
- 4c Dong G, Gang H, Chun-ying D, Ke-liang P, Qing-Jin M. Chem. Commun. 2002; 1096
- 4d Woods AD, Alcalde G, Golovko VB, Halliwell CM, Mays MJ, Rawson JM. Organometallics 2005; 24: 628
- 4e Chan WY, Lough AJ, Manners I. Angew. Chem. Int. Ed. 2007; 46: 9069
- 4f Sheppard SA, Bennett TL. R, Long NJ. Eur. J. Inorg. Chem. 2022; e202200055
- 5a Gale PA, Chen Z, Drew MG. B, Heath JA, Beer PD. Polyhedron 1998; 17: 405
- 5b Gale PA, Hursthouse MB, Light ME, Sessler JL, Warriner CN, Zimmerman RS. Tetrahedron Lett. 2001; 42: 6759
- 5c Granzhan A, Teulade-Fichou MP. Tetrahedron 2009; 65: 1349
- 5d Evans NH, Rahman H, Leontiev AV, Greenham ND, Orlowski GA, Zeng Q, Jacobs RM. J, Serpell CJ, Kilah NL, Davis JJ, Beer PD. Chem. Sci. 2012; 3: 1080
- 5e Tagliatesta P, Lembo A, Leoni A. New J. Chem. 2013; 37: 3416
- 5f Lim JY. C, Beer PD. Eur. J. Org. Chem. 2019; 3433
- 6a Beer PD, Bayly SR. Top. Curr. Chem. 2005; 255: 125
- 6b Bayly SR, Beer PD, Chen GZ. In Ferrocenes: Ligands, Materials and Biomolecules . Štěpnička P. Wiley; Chichester: 2008: 281
- 6c Sahoo SK. Dalton Trans. 2012; 50: 11681
- 6d Beitollahi H, Khalilzadeh MA, Tajik S, Safaei M, Zhang K, Jang HW, Shokouhimehr M. ACS Omega 2020; 5: 2049
- 7a Otón F, Tárraga A, Espinosa A, Velasco MD, Molina P. Dalton Trans. 2006; 3685
- 7b Evans NH, Serpell CJ, Christensen KE, Beer PD. Eur. J. Inorg. Chem. 2012; 939
- 7c Caballero A, White NG, Beer PD. CrystEngComm 2014; 16: 3694
- 7d Li C.-T, Cao Q.-Y, Li J.-J, Wang Z.-W, Dai B.-N. Inorg. Chim. Acta 2016; 449: 31
- 8a Herrick RS, Jarret RM, Curran TP, Dragoli DR, Flaherty MB, Lindyberg SE, Slate RA, Thornton LC. Tetrahedron Lett. 1996; 37: 5289
- 8b Moriuchi T, Ohmura SD, Moriuchi-Kawakami T. Inorganics 2018; 6: 111
- 8c Kovačević M, Markulin D, Zelenika M, Marjanović M, Lovrić M, Polančec D, Ivančić M, Mrvčić J, Molčanov K, Milašinović V, Roca S, Kodrin I, Barišić L. Int. J. Mol. Sci. 2022; 23: 12233
- 9 Moriuchi T. Eur. J. Inorg. Chem. 2022; e202100902
- 10 Maricic S, Frejd T. J. Org. Chem. 2002; 67: 7600
- 11 Drexler C, Milne M, Morgan E, Jennings M, Kraatz H.-B. Dalton Trans. 2009; 4370
- 12 Chowdhury S, Schatte G, Kraatz H.-B. Dalton Trans. 2004; 1726
- 13 Huang H, Mu L, He J, Cheng J.-P. J. Org. Chem. 2003; 68: 7605
- 14a Moriuchi T, Yoshida K, Hirao T. Organometallics 2001; 20: 3101
- 14b de Hatten X, Bothe E, Merz K, Huc I, Metzler-Nolte N. Eur. J. Inorg. Chem. 2008; 4530
- 15a Corbett PT, Leclaire J, Vial L, West KR, Wietor J.-L, Sanders JK. M, Otto S. Chem. Rev. 2006; 106: 3652
- 15b Cougnon FB. L, Sanders JK. M. Acc. Chem. Res. 2012; 45: 2211
- 15c Frei P, Hevey R, Ernst B. Chem. Eur. J. 2019; 25: 60
- 15d Canal-Martín A, Pérez-Fernández R. ACS Omega 2020; 5: 26307
- 15e Rodrigues A, Rocard L, Moumné R. ChemSystemsChem 2023; 5: e202300011
- 16a Beeren SR, Sanders JK. M. Chem. Sci. 2011; 2: 1560
- 16b Beeren SR, Sanders JK. M. J. Am. Chem. Soc. 2011; 133: 3804
- 16c Beeren SR, Pittelkow M, Sanders JK. M. Chem. Commun. 2011; 47: 7359
- 17 Larsen D, Beeren SR. Chem. Sci. 2019; 10: 9981
- 18 Kunde T, Pausch T, Guńka PA, Krzyżanowski M, Kasprzak A, Schmidt BM. Chem. Sci. 2022; 13: 2877
- 19 Li C, Tsesarskaja M, Gokel G. Supramol. Chem. 1995; 6: 79
- 20 Benniston AC, Sirbu D, Turta C, Probert MR, Clegg W. Tetrahedron Lett. 2014; 55: 3777
- 21 Larsen D, Jeppesen A, Kleinlein C, Pittelkow M. J. Org. Chem. 2017; 82: 8580
- 22 Macrocycle (1)2 Fc-[CO-Val-NHNH2][CH(OCH2CH2O)] (1) (75 mg, 0.18 mmol) was dissolved in a mixture of CHCl3 (172.5 mL) and MeOH (7.5 mL). To the solution was added 4-methylbenzohydrazide (8) (27 mg, 0.18 mmol), 1-naphthoic acid (9) (622 mg, 3.61 mmol), and Bu4NHSO4 (604 mg, 1.79 mmol), and the resulting mixture was stirred for 5 d. The solution was then washed with aq. Na2CO3 (2 × 200 mL), dried (Na2SO4), filtered, and concentrated in vacuo to give a brown oil. The crude material was redissolved in CH2Cl2–MeOH and adsorbed on Celite. Purification by column chromatography [silica gel, CH2Cl2 to CH2Cl2–MeOH (95:5)] gave an orange solid; yield: 23 mg (36%). The NMR spectrum reported here is for the major conformer (A) only. 1H NMR [500 MHz, CDCl3–CD3OD (96:4)]: δ = 10.82 [s, 2 H, hydrazone NH (H2)], 7.77 [s, 2 H, imine-H (H1)], 7.17 [d, 3 J = 8.7 Hz, 2 H, amide NH (H3)], 4.94 [s, 2 H, Cp-CH (H2′′)], 4.90 [s, 2 H, Cp-CH (H5′)], 4.66 [s, 2 H, Cp-CH (H5′′)], 4.49 [s, 2 H, Cp-CH (H2′)], 4.46 (d, 3 J = 6.0 Hz, 2 H, α-H of Val), 4.41 [m, 4 H, Cp-CH (H3′ and H4′′)], 4.34 [m, 4 H, Cp-CH (H4′ and H3′′)], 2.19 (m, 2 H, β-H of Val), 0.99 (d, 3 J = 6.8 Hz, 6 H, γ-H of Val), 0.90 (d, 3 J = 6.8 Hz, γ-H of Val). 13C NMR [125 MHz, CDCl3–CD3OD (96:4)]: δ = 170.4 (C=O), 167.1 (C=O), 150.8 (C=N), 80.6 (Cp-C), 71.9 (Cp-CH), 71.6 (Cp-CH), 71.5 (Cp-CH), 71.4 (Cp-CH), 71.1 (Cp-CH), 71.1 (Cp-CH), 69.2 (Cp-CH), 67.8 (Cp-CH), 57.2 (α-C of Val), 32.1 (β-C of Val), 19.7 (γ-C of Val), 17.8 (γ-C of Val). HRMS (ESI): m/z = [M + H]+ Calcd for C34H39Fe2N6O4: 707.1726; found: 707.1739.
- 23 Qiao Y.-H, Lin H, Lin H.-K. J. Inclusion Phenom. Macrocycl. Chem. 2007; 59: 211