Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2023; 55(10): 1517-1524
DOI: 10.1055/s-0042-1752398
DOI: 10.1055/s-0042-1752398
paper
Oxidation of α-Trifluoromethyl and Nonfluorinated Secondary Alcohols to Ketones Using a Nitroxide Catalyst
This research was funded by the University of Connecticut Research Enhancement Program (FP) and the Department of Chemistry Charles Waring Fund (WPB).

Abstract
A methodology for the oxidation of α-trifluoromethyl alcohols to the corresponding trifluoromethyl ketones is presented. A catalytic quantity of a nitroxide is used, and potassium persulfate serves as the terminal oxidant. The methodology proves effective for aromatic, heteroaromatic, and conjugated alcohol substrates. It can be extended to nonfluorinated secondary alcohols and, in this case, can be applied to a range of aromatic, heteroaromatic, and aliphatic alcohols.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1752398.
- Supporting Information
Publication History
Received: 29 October 2022
Accepted after revision: 04 January 2023
Article published online:
02 February 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Chaudhary B, Kulkarni N, Saiyed N, Chaurasia M, Desai S, Potkule S, Sharma S. Adv. Synth. Catal. 2020; 362: 4794
- 1b Wu W, Weng Z. Synlett 2018; 50: 1958
- 1c Kelly CB, Mercadante MA, Leadbeater NE. Chem. Commun. 2013; 49: 11133
- 2a Shan Q.-C, Liu S, Shen Y, Ma M, Duan X.-H, Gao P, Guo L.-N. Org. Lett. 2022; 24: 6653
- 2b Zhang X, Ning Y, Liu Z, Li S, Zanoni G, Bi X. ACS Catal. 2022; 12: 8802
- 2c Zhang X, Li L, Zanoni G, Han X, Bi X. Chem. Eur. J. 2022; 28: e202200280
- 2d Carceller-Ferrer L, González del Campo A, Vila C, Blay G, Muñoz MC, Pedro JR. J. Org. Chem. 2022; 87: 4538
- 2e Alberca S, Matador E, Iglesias-Sigüenza J, de Gracia Retamosa M, Fernández R, Lassaletta JM, Monge D. Chem. Commun. 2021; 57: 11835
- 2f Park D, Jette CI, Kim J, Jung W.-O, Lee Y, Park J, Kang S, Han MS, Stoltz BM, Hong S. Angew. Chem. Int. Ed. 2020; 59: 775
- 2g Liu Z, Zhang Z, Zhu G, Zhou Y, Yang L, Gao W, Tong L, Tang B. Org. Lett. 2019; 21: 7324
- 2h Balaraman K, Moskowitz M, Wolf C. Adv. Synth. Catal. 2018; 360: 4705
- 3a Francis F, Wuest F. Molecules 2021; 26: 6478
- 3b Meyer DN, Cortés González MA, Jiang X, Johansson-Holm L, Pourghasemi Lati M, Elgland M, Nordeman P, Antoni G, Szabó KJ. Chem. Commun. 2021; 57: 8476
- 4a Nguyen TH, Tran P.-T, Pham NQ. A, Hoang V.-H, Hiep DM, Ngo ST. ACS Omega 2022; 7: 20673
- 4b Hassan JJ, Lieske A, Dörpmund N, Klatt D, Hoffmann D, Kleppa M.-J, Kustikova OS, Stahlhut M, Schwarzer A, Schambach A, Maetzig T. Int. J. Mol. Sci. 2021; 22: 9411
- 4c Makhaeva GF, Lushchekina SV, Boltneva NP, Serebryakova OG, Kovaleva NV, Rudakova EV, Elkina NA, Shchegolkov EV, Burgart YV, Stupina TS, Terentiev AA, Radchenko EV, Palyulin VA, Saloutin VI, Bachurin SO, Richardson RJ. Eur. J. Med. Chem. 2021; 218: 113385
- 4d Zafrani Y, Parvari G, Amir D, Ghindes-Azaria L, Elias S, Pevzner A, Fridkin G, Berliner A, Gershonov E, Eichen Y, Saphier S, Katalan S. J. Med. Chem. 2021; 64: 4516
- 4e Zhang Z, Wang Y, Chen X, Song X, Tu Z, Chen Y, Zhang Z, Ding K. Bioorg. Med. Chem. 2021; 50: 116457
- 4f Cheng A, Zhang L, Zhou Q, Liu T, Cao J, Zhao G, Zhang K, Song G, Zhao B. Angew. Chem. Int. Ed. 2021; 60: 20166
- 4g Citarella A, Micale N. Molecules 2020; 25: 4031
- 4h Agback P, Woestenenk E, Agback T. BMC Mol. Cell Biol. 2020; 21: 38
- 4i da Silva-Júnior EF, de Araújo-Júnior JX. Bioorg. Med. Chem. 2019; 27: 3963
- 5a Wu J, Wu H, Liu X, Zhang Y, Huang G, Zhang C. Org. Lett. 2022; 24: 4322
- 5b Reeve JT, Song JJ, Tan Z, Lee H, Yee NK, Senanayake CH. J. Org. Chem. 2008; 73: 9476
- 6a Wu J, Wu H, Liu X, Zhang Y, Huang G, Zhang C. Org. Lett. 2022; 24: 4322
- 6b Boivin J, El Kaim L, Zard SZ. Tetrahedron 1995; 51: 2573
- 7 Fujihira Y, Liang Y, Ono M, Hirano K, Kagawa T, Shibata N. Beilstein J. Org. Chem. 2021; 17: 431
- 8 For a review, see: Yue N, Sheykhahmad FR. J. Fluor. Chem. 2020; 238: 109629
- 9 For a recent example, see: Gan L, Yu Q, Liu Y, Wan J.-P. J. Org. Chem. 2021; 86: 1231
- 10a Colas K, dos Santos AC. V. D, Kohlhepp SV, Mendoza A. Chem. Eur. J. 2022; 28: e202104053
- 10b Johansen MB, Gedde OR, Mayer TS, Skrydstrup T. Org. Lett. 2020; 22: 4068
- 11 Linderman RJ, Graves DM. J. Org. Chem. 1989; 54: 661
- 12 Stewart R, Lee DG. Can. J. Chem. 1964; 42: 439
- 13 Cheng H, Pei Y, Leng F, Li J, Liang A, Zou D, Wu Y, Wu Y. Tetrahedron Lett. 2013; 54: 4483
- 14 Kelly CB, Mercadante MA, Hamlin TA, Fletcher MH, Leadbeater NE. J. Org. Chem. 2012; 77: 8131
- 15a Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DW. C. Chem. Rev. 2022; 122: 1485
- 15b Xu G.-Q, Xu P.-F. Chem. Commun. 2021; 57: 12914
- 15c Prier CK, MacMillan DW. C. In Visible Light Photocatalysis in Organic Chemistry . John Wiley & Sons, Ltd; Weinheim: 2018: 299
- 15d Connell TU. Dalton Trans. 2022; 51: 13176
- 15e McAtee RC, McClain EJ, Stephenson CR. J. Trends Chem. 2019; 1: 111
- 16 Pistritto VA, Paolillo JM, Bisset KA, Leadbeater NE. Org. Biomol. Chem. 2018; 16: 4715
- 17a Ovian JM, Kelly CB, Pistritto VA, Leadbeater NE. Org. Lett. 2017; 19: 1286
- 17b Nandi J, Ovian JM, Kelly CB, Leadbeater NE. Org. Biomol. Chem. 2017; 15: 8295
- 18a Nandi J, Leadbeater NE. Org. Biomol. Chem. 2019; 17: 9182
- 18b Nandi J, Witko ML, Leadbeater NE. Synlett 2018; 29: 2185
- 19 Nandi J, Hutcheson EL, Leadbeater NE. Tetrahedron Lett. 2021; 63: 152632
- 20 Sandoval AL, Politano F, Witko ML, Leadbeater NE. Org. Biomol. Chem. 2021; 19: 2986
- 21 Politano F, Sandoval AL, Witko ML, Doherty KE, Schroeder CM, Leadbeater NE. Eur. J. Org. Chem. 2022; e202101239
- 22 Sandoval AL, Politano F, Witko ML, Leadbeater NE. Org. Biomol. Chem. 2022; 20: 667
- 23 Reddy VP. In Organofluorine Compounds in Biology and Medicine. Elsevier; Amsterdam: 2015: 1
- 24 Schlosser PM, Bale AS, Gibbons CF, Wilkins A, Cooper GS. Environ. Health Perspect. 2015; 123: 114
- 25 Kelly CB, Mercadante MA, Wiles RJ, Leadbeater NE. Org. Lett. 2013; 15: 2222
- 26 Bartelson AL. Graduate Thesis . University of Connecticut; USA: 2011
- 27 Politano F, Brydon WP, Nandi J, Leadbeater NE. Molbank 2021; M1180
- 28 De Souza GF. P, Salles AG. Green Chem. 2019; 21: 5507
- 29 Zhao SC, Ji KG, Lu L, He T, Zhou AX, Yan RL, Ali S, Liu XY, Liang YM. J. Org. Chem. 2012; 77: 2763
- 30 Liang C, Su HW. Ind. Eng. Chem. Res. 2009; 48: 5558
- 31 Borja-Miranda A, Valencia-Villegas F, Lujan-Montelongo JA, Polindara-García LA. J. Org. Chem. 2021; 86: 929
- 32 Lee J, Von Gunten U, Kim JH. Environ. Sci. Technol. 2020; 54: 3064
- 33 Rosenau CP, Jelier BJ, Gossert AD, Togni A. Angew. Chem. Int. Ed. 2018; 57: 9528
- 34 Mercadante MA, Kelly CB, Bobbitt JM, Tilley LJ, Leadbeater NE. Nat. Protoc. 2013; 8: 666
- 35 Hamlin T, Kelly C, Cywar R, Leadbeater NE. J. Org. Chem. 2014; 79: 1145
- 36 Miller SA, Bisset KA, Leadbeater NE, Eddy NA. Eur. J. Org. Chem. 2019; 1413
- 37 Kani R, Inuzuka T, Kubota Y, Funabiki K. Eur. J. Org. Chem. 2020; 4487
- 38 Hu D, Jiang X. Green Chem. 2022; 24: 124
- 39 Ma J, Hong C, Wan Y, Li M, Hu X, Mo W, Hu B, Sun N, Jin L, Shen Z. Tetrahedron Lett. 2017; 58: 652
- 40 Ju Z.-Y, Song L.-N, Chong M.-B, Cheng D.-G, Hou Y, Zhang X.-M, Zhang Q.-H, Ren L.-H. J. Org. Chem. 2022; 87: 3978
- 41 Porcheddu A, Colacino E, Cravotto G, Delogu F, De Luca L. Beilstein J. Org. Chem. 2017; 13: 2049
- 42 Gao J, Ma R, Feng L, Liu Y, Jackstell R, Jagadeesh RV, Beller M. Angew. Chem. Int. Ed. 2021; 60: 18591
For reviews, see:
For recent examples, see:
For recent examples, see:
See, for example:
See, for example:
See, for example:
For reviews on the use of photocatalysis in tandem with other catalytic methods, see: